

Acta Veterinaria et Zootechnica Sinica ›› 2026, Vol. 57 ›› Issue (1): 486-499.doi: 10.11843/j.issn.0366-6964.2026.01.043
• CLINICAL VETERINARY MEDICINE • Previous Articles Next Articles
MIAO Yuhang1,2(
), DING Tao1,2, XIN Jie1,2, MA Wenyan1,2, DU Jun1,2(
)
Received:2025-02-24
Online:2026-01-23
Published:2026-01-26
Contact:
DU Jun
E-mail:myh6943@126.com;dujun@nxu.edu.cn
CLC Number:
MIAO Yuhang, DING Tao, XIN Jie, MA Wenyan, DU Jun. Differential Expression Analysis of microRNA in Bovine Mammary Epithelial Cells Induced by Candida krusei[J]. Acta Veterinaria et Zootechnica Sinica, 2026, 57(1): 486-499.
Table 1
RT-qPCR primers for microRNA expression detection"
非编码小RNA microRNA | 引物序列(5′→3′) Primer sequence | 产物长度/bp Product length |
|---|---|---|
| Bta-miR-2377 | 茎环引物 stem-loop primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGAGC 上游引物 Forward primer: GCGTGTCCACTGCACACACTA 下游引物 Reverse primer: ATCCAGTGCAGGGTCCGAGG | 50 21 20 |
| Bta-miR-2285i | 茎环引物 stem-loop primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCCAAAA 上游引物 Forward primer: ACGAGAACAAAACCGGAACGAAC 下游引物 Reverse primer: ATCCAGTGCAGGGTCCGAGG | 50 23 20 |
| Bta-miR-215 | 茎环引物 stem-loop primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGTCTG 上游引物 Forward primer: GCGGCCTGATGACCTATGAATTG 下游引物 Reverse primer: ATCCAGTGCAGGGTCCGAGG | 50 23 20 |
| Bta-miR-362-5p | 茎环引物 stem-loop primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACTCAC | 50 |
| 上游引物 Forward primer: GAACTGACAATCCTTGGAACCTAGG | 25 | |
| 下游引物 Reverse primer: ATCCAGTGCAGGGTCCGAGG | 20 | |
| Bta-miR-219b-3p | 茎环引物 stem-loop primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACTGAT 上游引物 Forward primer: AGAAGGCAGAATTGCGTTTGGAC 下游引物 Reverse primer: ATCCAGTGCAGGGTCCGAGG | 50 23 20 |
| Bta-miR-146b | 茎环引物 stem-loop primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACAGCC 上游引物 Forward primer: CCACCATGTGAGAACTGAATTCCAT 下游引物 Reverse primer: ATCCAGTGCAGGGTCCGAGG | 50 25 20 |
| Bta-miR-20b_R+3_1ss10CT | 茎环引物 stem-loop primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAACTAC 上游引物 Forward primer: AGCTGGACCAAAGTGCTTACAGT 下游引物 Reverse primer: ATCCAGTGCAGGGTCCGAGG | 50 23 20 |
| Bta-miR-19b_R+2 | 茎环引物 stem-loop primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACTCTC 上游引物 Forward primer: AACCTCCTAATCCTTGCTACCTGG 下游引物 Reverse primer: ATCCAGTGCAGGGTCCGAGG | 50 24 20 |
| β-Actin | 上游引物 Forward primer: AGATCAAGATCATCGCGCCC 下游引物 Reverse primer: CATTTGCGGTGGACGATGGA | 20 20 |
| U6 snRNA | 上游引物 Forward primer: CTCGCTTCGGCAGCACA 下游引物 Reverse primer: AACGCTTCACGAATTTGCGT | 17 20 |
Table 2
Quality statistics of sequencing library"
样品 Sample | 质控后序列(/%) Clean reads | 有效序列(/%) Valid reads | GC含量/% GC | Q20值/% Q20 | Q30值/% Q30 |
|---|---|---|---|---|---|
空白对照组 1 Control 1 | 8 550 695 (76.42) | 7 853 099 (91.84) | 55.21 | 94.18 | 88.93 |
空白对照组 2 Control 2 | 8 642 738 (86.55) | 8 252 043 (95.48) | 50.74 | 97.74 | 94.60 |
空白对照组3 Control 3 | 11 450 128 (88.86) | 10 954 421 (95.67) | 50.78 | 97.82 | 94.87 |
ATCC 6258感染组1 ATCC 6258 1 | 10 111 972 (90) | 9 783 952 (96.76) | 50.13 | 97.83 | 95.08 |
ATCC 6258 感染组2 ATCC 6258 2 | 10 710 185 (91.32) | 10 278 510 (95.97) | 50.35 | 97.82 | 94.80 |
ATCC 6258感染组3 ATCC 6258 3 | 10 926 138 (91.58) | 10 545 598 (96.52) | 49.97 | 97.97 | 95.29 |
Table 3
Differential expression of microRNA between blank control group and ATCC 6258 infection group"
microRNA名称 microRNA name | 差异倍数 Log2FC | P值 P value | 上调/下调 Up/Down |
|---|---|---|---|
| mdo-miR-196a-5p_R+2 | 2.891 907 300 | 0.001 073 447 | Up |
| PC-3p-17914_31 | 1.948 567 463 | 0.001 313 257 | Up |
| PC-3p-23460_18 | 2.569 135 000 | 0.001 540 719 | Up |
| chi-miR-191-3p | -0.807 459 348 | 0.003 157 484 | Down |
| bta-miR-2377 | -0.723 000 000 | 0.005 163 673 | Down |
| oan-miR-16b-5p_L+1 | 2.369 133 16 | 0.006 208 570 | Up |
| bta-miR-2285i | 0.356 148 451 | 0.009 318 871 | Up |
| PC-5p-8555_99 | -1.033 720 831 | 0.010 246 079 | Down |
| PC-3p-20561_24 | -2.301 896 470 | 0.010 361 880 | Down |
| chi-miR-18a-3p_R+1 | -0.403 969 492 | 0.010 398 300 | Down |
| pal-miR-9993a-3p | -0.330 814 089 | 0.010 453 945 | Down |
| bta-miR-20b_R+3_1ss10CT | 0.719 604 509 | 0.020 103 455 | Up |
| bta-miR-215 | 2.408 603 805 | 0.030 145 620 | Up |
| mmu-miR-378d_R+2_1ss6CA | 1.752 421 816 | 0.035 169 227 | Up |
| bta-miR-362-5p | 0.584 875 060 | 0.038 184 233 | Up |
| eca-miR-1839_L-1R+3 | 2.094 428 940 | 0.042 436 847 | Up |
| PC-3p-13080_52 | -0.486 472 783 | 0.049 297 031 | Down |
| PC-3p-19898_25 | 2.022 363 047 | 0.050 328 524 | Up |
| bta-miR-500_R+2 | 0.370 279 491 | 0.050 354 398 | Up |
| bta-miR-219b-3p | 1.410 831 312 | 0.050 380 862 | Up |
| lca-miR-19b_R+2 | 1.588 370 285 | 0.050 393 992 | Up |
| bta-miR-146b | 0.729 240 479 | 0.050 461 322 | Up |
| PC-3p-17661_32 | 1.303 327 519 | 0.050 485 736 | Up |
Table 4
GO functional annotation of differentially expressed microRNA"
功能组 Functionalgroup | 分类 Class | GO编号 GO ID | 显著基因数 Significantgenes | 总基因数 Annotated genes |
|---|---|---|---|---|
生物学过程 Biologicalprocess | 蛋白磷酸化 Protein phosphorylation | GO:0006468 | 172 | 3 590 |
RNA聚合酶Ⅱ转录正调控 Positive regulation of transcription by RNA polymerase II | GO:0045944 | 223 | 3 590 | |
细胞增殖负调控 Negative regulation of cell population proliferation | GO:0008285 | 78 | 3 590 | |
| 子宫胚胎发育 In utero embryonic development | GO:0001701 | 62 | 3 590 | |
| 囊泡运输 Vesicle-mediated transport | GO:0016192 | 48 | 3 590 | |
转化生长因子β受体信号通路 Transforming growth factor beta receptor signaling pathway | GO:0007179 | 28 | 3 590 | |
RNA聚合酶Ⅱ转录负调控 Negative regulation of transcription by RNA polymerase II | GO:0000122 | 150 | 3 590 | |
| 中心体定位 Centrosome localization | GO:0051642 | 11 | 3 590 | |
磷脂酰肌醇去磷酸化 Phosphatidylinositol dephosphorylation | GO:0046856 | 14 | 3 590 | |
| 转录正调控 Positive regulation of transcription | GO:0045893 | 123 | 3 590 | |
| 凋亡正调控 Positive regulation of apoptotic process | GO:0043065 | 58 | 3 590 | |
| 血生成 Hemopoiesis | GO:0030097 | 22 | 3 590 | |
| 细胞生长的负调控 Negative regulation of cell growth | GO:0030308 | 31 | 3 590 | |
| BMP信号通路 BMP signaling pathway | GO:0030509 | 26 | 3 590 | |
| 蛋白质转运 Protein transport | GO:0015031 | 45 | 3 590 | |
细胞组分 Cellularcomponent | 细胞溶质 Cytosol | GO:0005829 | 657 | 3 590 |
| 核质 Nucleoplasm | GO:0005654 | 624 | 3 590 | |
| 细胞质 Cytoplasm | GO:0005737 | 700 | 3 590 | |
| 细胞核 Nucleus | GO:0005634 | 725 | 3 590 | |
| 质膜 Plasma membrane | GO:0005886 | 505 | 3 590 | |
| 内质网 Endoplasmic reticulum | GO:0005783 | 200 | 3 590 | |
| 高尔基体 Golgi apparatus | GO:0005794 | 187 | 3 590 | |
胞内膜结合细胞器 Intracellular membrane-bounded organelle | GO:0043231 | 177 | 3 590 | |
| 内质网膜 Endoplasmic reticulum membrane | GO:0005789 | 93 | 3 590 | |
| 膜 Membrane | GO:0016020 | 481 | 3 590 | |
分子功能 Molecularfunction | 相同蛋白结合 Identical protein binding | GO:0042802 | 302 | 3 590 |
| 蛋白结合 Protein binding | GO:0005515 | 639 | 3 590 | |
| 蛋白激酶活性 Protein kinase activity | GO:0004672 | 142 | 3 590 | |
| 蛋白激酶结合 Protein kinase binding | GO:0019901 | 98 | 3 590 | |
| 泛素蛋白连接酶结合 Ubiquitin protein ligase binding | GO:0031625 | 73 | 3 590 | |
| ATP结合 ATP binding | GO:0005524 | 264 | 3 590 | |
| 序列特异性DNA结合 Sequence-specific DNA binding | GO:0043565 | 102 | 3 590 |
| [1] | RUEGG P L.A 100-Year Review:Mastitis detection,management,and prevention[J].J Dairy Sci,2017,100(12):10381-10397. |
| [2] | 蔡明玉,张海龙,海珍珍,等.重组克柔念珠菌14-3-3蛋白诱导奶牛乳腺上皮细胞炎症反应的分子机制[J].畜牧兽医学报,2023,54:1679-1689. |
| CAI M,ZHANG H L,HAI Z Z,et al.The inflamed mechanism induced by recombined 14-3-3 protein of Candida krusei on bovine mammary epithelial cells[J].Acta Veterinaria et Zootechnica Sinica,2023,54:1679-1689.(in Chinese) | |
| [3] | 杜 军.克柔念珠菌两相损伤奶牛乳腺上皮细胞机制研究[D].银川:宁夏大学,2021. |
| DU J.Study on the mechanism of two-phase injury of bovine mammary epithelial cells by Candida krusei[D].Yinchuan:Ningxia University,2021.(in Chinese) | |
| [4] | GORJI A E,ROUDBARI Z,SADEGHI B,et al.Transcriptomic analysis on the promoter regions discover gene networks involving mastitis in cattle[J].Microbial Pathog,2019,137:103801. |
| [5] | JU Z H,JIANG Q,LIU G,et al.Solexa sequencing and custom microRNA chip reveal repertoire of microRNAs in mammary gland of bovine suffering from natural infectious mastitis[J].Anim Genet,2018,9(1):3-18. |
| [6] | 杨 箭,王兴平,罗仍卓么,等.miRNA在奶牛乳房炎中的表达模式和分子调控机制[J].农业生物技术学报,2020,28:2069-2079. |
| YANG J,WANG X P,LUORENG Z M,et al.The expression pattern and molecular regulatory mechanism of miRNA in mastitis of dairy cows(Bos taurus)[J].Journal of Agricultural Biotechnology,2020,28:2069-2079.(in Chinese) | |
| [7] | SUN K,LAI E C.Adult-specific functions of animal microRNAs[J].Nat Rev Genet,2013,14(8):535-548. |
| [8] | NORMA S,ISABELLE D R,ISABELLE T,et al.MicroRNAs in inflammasomopathies[J].Immunol Lett,2023,256-257:48-54. |
| [9] | RYAN M O,DINESH S R,C,AADEL A,et al.Physiological and pathological roles for microRNAs in the immune system[J].Nat Rev Immunol,2010,10(2):111-122. |
| [10] | SATOSHI N,YA C,MASAYUKI S,et al.Transcriptomic profiling identifies an exosomal microRNA signature for predicting recurrence following surgery in patients with pancreatic ductal adenocarcinoma[J].Ann Surg,2022,276(6):e876-e885. |
| [11] | DAMIEN F,RONAN G S,LOUISE B,et al.The identification of circulating miRNA in bovine serum and their potential as novel biomarkers of early Mycobacterium avium subsp paratuberculosis infection[J].PloS One,2015.10(7):e0134310. |
| [12] | LI R,ZHANG C L,LIAO X,et al.Transcriptome microRNA profiling of bovine mammary glands infected with Staphylococcus aureus[J].Int J Mol Sci,2015,16(3):4997-5013. |
| [13] | LAI Y C,TAKURO F,TADASHI M,et al.Inflammation-related microRNA expression level in the bovine milk is affected by mastitis[J].PloS One,2017,12(5):e0177182. |
| [14] | LUORENG Z M,WANG X P,MEI C G,et al.Expression profiling of peripheral blood miRNA using RNAseq technology in dairy cows with Escherichia coli-induced mastitis[J].Sci Rep,2018,8(1):12693. |
| [15] | WANG X Z,SU F,YU X H,et al.RNA-seq whole transcriptome analysis of bovine mammary epithelial cells in response to intracellular Staphylococcus aureus[J].Front Vet Sci,2020,7:642. |
| [16] | LUORENG Z M,WEI D W,WANG X P.MiR-125b regulates inflammation in bovine mammary epithelial cells by targeting the NKIRAS2 gene[J].Vet Res,2021,52(1):122. |
| [17] | BAGNICKA E,KAWECKA-GROCHOCKA E,PAWLINA-TYSZKO K,et al.MicroRNA expression profile in bovine mammary gland parenchyma infected by coagulase-positive or coagulase-negative staphylococci[J].Vet Res,2021,52(1):41. |
| [18] | PU J H,LI R,ZHANG C L,et al.Expression profiles of miRNAs from bovine mammary glands in response to Streptococcus agalactiae-induced mastitis[J].J Dairy Res,2017,84(3):300-308. |
| [19] | MA S Y,TONG C,EVELINE M I A,et al.Identification and characterization of differentially expressed exosomal microRNAs in bovine milk infected with Staphylococcus aureus[J].BMC Genomics,2019,20(1):934. |
| [20] | MAN Z,HERMAN W B,JIAN G,et al.MicroRNA miR-223 modulates NLRP3 and Keap1,mitigating lipopolysaccharide-induced inflammation and oxidative stress in bovine mammary epithelial cells and murine mammary glands[J].Vet Res,2023,54(1):78. |
| [21] | CHEN Z,LIANG Y,LU Q,et al.Cadmium promotes apoptosis and inflammation via the circ08409/miR-133a/TGFB2 axis in bovine mammary epithelial cells and mouse mammary gland[J].Ecotoxicol Environ Saf,2021,222:112477. |
| [22] | YU C,JING Y,ZHI H,et al.Exosomal lnc-AFTR as a novel translation regulator of FAS ameliorates Staphylococcus aureus-induced mastitis[J].BioFactors (Oxford,England),2022,48(1):148-163. |
| [23] | 潘晓乐.奶牛金黄色葡萄球菌性乳腺炎免疫相关microRNA的筛选及其生物学功能 [D].银川:宁夏大学,2022. |
| PAN X L.Screening og microRNAs in immune response to S.aureus isolated from bovine mastitis and their biological functions[D].Yinchuan :Ningxia University,2022.(in Chinese) | |
| [24] | ZHANG Y P,XU Y Q,CHEN B W,et al.Selenium deficiency promotes oxidative stress-induced mastitis via activating the NF-κB and MAPK pathways in dairy cow[J].Biol Trace Elem Res,2022,200(6):2716-2726. |
| [25] | LI J D,YIN P,GONG P,et al.8-methoxypsoralen protects bovine mammary epithelial cells against lipopolysaccharide-induced inflammatory injury via suppressing JAK/STAT and NF-κB pathway[J].Microbiol Immunol,2019,63(10):427-437. |
| [26] | MARVALIM C,DATTA A,LEE S C.Role of p53 in breast cancer progression:An insight into p53 targeted therapy[J].Theranostics,2023,13(4):1421-1442. |
| [27] | XU F,NA L X,LI Y F,et al.Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours[J].Cell Biosci,2020,10(1):54. |
| [28] | SEYED H A,KHALIL K,MEHRAN G.Toll-like receptors (TLRs) and their potential therapeutic applications in diabetic neuropathy[J].Int Immunopharmacol,2022.102:108398. |
| [29] | MOSTAFIZAR M,CORTES-PÉREZ C,SNOW W,et al.Challenges with methods for detecting and studying the transcription factor nuclear factor kappa B (NF-κB) in the central nervous system[J].Cells,2021,10(6):1335. |
| [30] | 王 凡.miR-148a靶向TLR4/NF-κB调控奶牛乳腺上皮细胞炎性损伤的研究[D].杨凌:西北农林科技大学,2024. |
| WANG F.MiR-148a targets TLR4/NF-κB pathway to attenuate inflammatory injury in bovine mammary epithelial cells [D].Yangling :Northwest A & F University,2024 (in Chinese) | |
| [31] | MOCKENHAUPT K,GONSIEWSKI A,KORDULA T.RelB and neuroinflammation[J].Cells,2021,10(7):1609. |
| [32] | CILDIR G,LOW K C,TERGAONKAR V.Noncanonical NF-κB signaling in health and disease[J].Trend Mol Med,2016,22(5):414-429. |
| [33] | MILLET P,MCCALL C,YOZA B.RelB:an outlier in leukocyte biology[J].J Leukoc Biol,2013,94(5):941-951. |
| [34] | 吴钟伟,赵圣吉,李春富,等.miR-146a-3p靶向RELB调控动脉粥样硬化小鼠内皮细胞的细胞因子分泌 [J].海南医学院学报,2020,26:742-748. |
| WU Z W,ZHAO S J,LI C F,et al.miR-146a-3p targets RELB regulates cytokine secretion in endothelial cells of atherosclerotic mice[J].Journa of Hainan Medical Colleage,2020,26:742-748.(in Chinese) | |
| [35] | MA Y,JADE N.Specificity models in MAPK cascade signaling[J].FEBS Open Bio,2023,13(7):1177-1192. |
| [36] | AIWEN S,LIU L,LI S,et al.Natural products targeting the MAPK-signaling pathway in cancer:overview[J].J Cancer Res Clin Oncol,2024,150(1):6. |
| [37] | WANG H,BI C L,WANG Y J,et al.Selenium ameliorates Staphylococcus aureus-induced inflammation in bovine mammary epithelial cells by inhibiting activation of TLR2,NF-κB and MAPK signaling pathways[J].BMC Vet Res,2018.14(1):197. |
| [38] | XU P,ZHANG G F,HOU S X,et al.MAPK8 mediates resistance to temozolomide and apoptosis of glioblastoma cells through MAPK signaling pathway[J].Biomed Pharmacother,2018.106:1419-1427. |
| [39] | GU M,LIU K,XIONG H,et al.MiR-130a-3p inhibits endothelial inflammation by regulating the expression of MAPK8 in endothelial cells[J].Heliyon,2024,10(2):e24541. |
| [40] | HU Q,BIAN Q H,RONG D C,et al.JAK/STAT pathway:Extracellular signals,diseases,immunity,and therapeutic regimens[J].Front Bioeng Biotechnol,2023,11:1110765. |
| [41] | NITISH K,NIDHI S,SIDHARTH M.Connection between JAK/STAT and PPARγ signaling during the progression of multiple sclerosis:Insights into the modulation of T-cells and immune responses in the brain[J].Curr Mol Pharmacol,2021,14(5):823-837. |
| [42] | HUANG W,LI Y Y,ZHANG C,et al.IGF2BP3 facilitates cell proliferation and tumorigenesis via modulation of JAK/STAT signalling pathway in human bladder cancer[J].J Cell Mol Med,2020,24(23):13949-13960. |
| [43] | 蒲俊华.奶牛链球菌型乳腺炎乳腺组织基因表达与microRNA分析及miR-122对EPO和JAK-STAT通路靶向调控 [D].扬州:扬州大学,2017. |
| PU J H.Expression profiles of genes and microRNAs from bovine mammary glands in response to Streptococcus agalatiae-induced mastitis and regulation of miR-122 on EPO and JAK-STAT pathway[D].Yangzhou:Yangzhou University,2017.(in Chinese) | |
| [44] | RUCHI P A,SCOTT M L,RAZELLE K.JAK:Not just another kinase[J].Mol Cancer Therap,2022,21(12):1757-1764. |
| [45] | AWASTHI N,LIONGUE C,C,WARD A.STAT proteins:a kaleidoscope of canonical and non-canonical functions in immunity and cancer[J].J Hematol Oncol,2021,14(1):198. |
| [46] | MAURER B,KOLLMANN S,PICKEM J,et al.STAT5A and STAT5B-twins with different personalities in hematopoiesis and leukemia[J].Cancers,2019,11(11):1726. |
| [47] | GOTTHARDT D,TRIFINOPOULOS J,SEXL V,et al.JAK/STAT cytokine signaling at the crossroad of NK cell development and maturation[J].Front Immunol,2019,10:2590. |
| [1] | WAN Qiongfei, SHI Shanshan, GUO Ruonan, Lü Hang, HU Debao, GUO Yiwen, ZHANG Linlin, DING Xiangbin, GUO Hong, LI Xin. Screening and Functional Analysis of Key lncRNAs of Bovine Embryonic Muscle Development [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3802-3812. |
| [2] | GAO Linna, JIANG Yingying, WANG Yue, SHI Qianqian, AN Zhenjiang, WANG Huili, SHEN Yangyang, CHEN Kunlin, ZHANG Leying. Construction of a Whole Genome Knockout Library of bMECs Based on CRISPR/Cas9 Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2711-2723. |
| [3] | WU Qiong, LI Lingdan, YUAN Hui, BIN Chen, DENG Ke, LI Wei, YE Shiyi, LI Guopan, SHEN Qingchun, XIONG Tao. Prokaryotic Expression of PoIFN-α 8s and Identification of Its Activity in vitro and in vivo [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2413-2423. |
| [4] | ZHAO Ying, WANG Jinglei, WANG Meng, WANG Libin, ZHANG Qian, LI Zhijie, MA Xin, YU Sijiu, PAN Yangyang. Preparation and Characterization of Forsythiaside A and Kaempferol Encapsulated in Milk-derived Exosomes and Evaluation of Anti-inflammatory Effects in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2481-2495. |
| [5] | FU Tingshu, ZHOU Hongda, WANG Miao, CHEN Mengwei, BAI Xiaonan, MA Baohua, PENG Sha. Curcumin Alleviates Oxidative Stress and Apoptosis Induced by Heat Stress in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 6411-6421. |
| [6] | MA Yue, MIAO Yuhang, DING Tao, XIN Jie, MA Wenyan, LI Yanan, ZHOU Xuezhang, DU Jun. Signaling Pathway Analysis of Ferroptosis Induced by Recombinant Candida krusei 14-3-3 Protein in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5706-5720. |
| [7] | HU Ximin, LUORENG Zhuoma, ZHOU Ran, LI Yuhang, WANG Xingping. Role of lncRNA PFN1-AS1 in the Inflammatory Response of Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5875-5887. |
| [8] | SUN Tongyu, MA Tao. Research Progress on Composition and Function of Colostral MicroRNA in Ruminants [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 74-81. |
| [9] | ZHOU Xianshan, HUANG Shihui, NIU Xi, RAN Xueqin, WANG Jiafu. Differential Expression Study of Structural Variation in the Ubiquitin Ligase 2 Gene of Xiang Pigs with Wrinkled Skin [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 136-146. |
| [10] | ZHOU Yang, WU Weizi, CAO Weisheng, WANG Fuguang, XU Xiuqiong, ZHONG Wenxia, WU Liyang, YE Jian, LU Shousheng. A Whole Genome Sequencing Method for African Swine Fever Virus based on Nanopore Sequencing Technology was Established [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2080-2089. |
| [11] | CAO Yuzhu, XING Yuxin, MA Chenglin, GUAN Hongbo, JIA Qihui, KANG Xiangtao, TIAN Yadong, LI Zhuanjian, LIU Xiaojun, LI Hong. Biological Characterization of Chicken FGF6 Gene and Association of Its Polymorphisms with Economic Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1536-1550. |
| [12] | YANG Yang, YU Qian, LIU Yucheng, YANG Hua, ZHAO Zhuo, WANG Limin, ZHOU Ping, YANG Qingyong, DAI Rong. Identification and Tissue Expression Analysis of the Sheep MYL Gene Family [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1551-1564. |
| [13] | TIAN Rui, XU Sixiang, XIE Feng, LIU Guangjin, WANG Gang, LI Qingxia, DAI Lei, XIE Guoxin, ZHANG Qiongwen, LU Yajing, WANG Guangwen, WANG Jinxiu, ZHANG Wei. Bioinformatics Analysis of the Genome of Clostridium perfringens Isolated from Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1707-1715. |
| [14] | KANG Fangyuan, LIU Zhentao, WU Kuixian, NI Han, ZHONG Kai, LI Heping, YANG Guoyu, HAN Liqiang. Regulation of Lipophagy on the Size of Lipid Droplets in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1095-1101. |
| [15] | Helin LI, Yufen JIANG, Na CHENG, Yuchen HAN, Xiaoying HUO, Hongding SU, Yue CHANG, Yuzhu FANG, Pei WANG, Baoyu JIA, Hongjiang WEI, Wenmin CHENG. The Study of Regulatory Effect of Differentially Expressed microRNAs on the Npm2 Expression in Pig Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5035-5049. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||