Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (6): 2917-2926.doi: 10.11843/j.issn.0366-6964.2025.06.034
• Preventive Veterinary Medicine • Previous Articles Next Articles
ZHANG Manqi(), ZHAO Bingyu(
), WEN Ruru, ZHANG Jingwen, SUN Mengran, ZHAN Leyang, GOU Jingxuan, SONG Xiangjun*(
)
Received:
2024-08-09
Online:
2025-06-23
Published:
2025-06-25
Contact:
SONG Xiangjun
E-mail:2086428668@qq.com;zhaobingyu320@136.com;sxj@ahau.edu.cn
CLC Number:
ZHANG Manqi, ZHAO Bingyu, WEN Ruru, ZHANG Jingwen, SUN Mengran, ZHAN Leyang, GOU Jingxuan, SONG Xiangjun. Prokaryotic Expression of the T6SS Effector Protein Tse1 and Its inhibitory Effect on Staphylococcus aureus[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2917-2926.
Fig. 2
Expression and characterization of the recombinant protein Tse1 M.Protein molecular weight marker; 1.Induced by pET-28a-Tse1 recombinant plasmid; 2.Supernatant after 5 h of induction at 37 ℃; 3.Inclusion bodies were induced for 5 h at 37 ℃; 4.Empty plasmid pET-28a induction; 5.Supernatant after 16 h of induction at 16 ℃; 6.Inclusion bodies were induced for 16 h at 16 ℃; 7.Induction by pET-28a-Tse1;8.Protein combined with magnetic beads incubation exudate; 9-11.40mm WB wash impurity; 12.60 mm WB wash impurity; 13.70 mm WB wash impurity; 14.Objective protein"
1 | VESTERGAARD M , FREES D , INGMER H . Antibiotic resistance and the MRSA problem[J]. Microbiol Spectr, 2019, 7 (2): GPP3-0057-2018. |
2 | DE JONG N W M , VAN KESSEL K P M , VAN STRIJP J A G . Immune evasion by Staphylococcus aureus[J]. Microbiol Spectr, 2019, 7 (2): GPP3-0061-2019. |
3 |
DEO S , TURTON K L , KAINTH T , et al. Strategies for improving antimicrobial peptide production[J]. Biotechnol Adv, 2022, 59, 107968.
doi: 10.1016/j.biotechadv.2022.107968 |
4 |
BARDAN A , NIZET V , GALLO R L . Antimicrobial peptides and the skin[J]. Expert Opin Biol Ther, 2004, 4 (4): 543- 549.
doi: 10.1517/14712598.4.4.543 |
5 |
YOKOO H , HIRANO M , MISAWA T , et al. Helical antimicrobial peptide foldamers containing non-proteinogenic amino acids[J]. ChemMedChem, 2021, 16 (8): 1226- 1233.
doi: 10.1002/cmdc.202000940 |
6 |
LUO Y , SONG Y Z . Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities[J]. Int J Mol Sci, 2021, 22 (21): 11401.
doi: 10.3390/ijms222111401 |
7 |
KUMAR P , KIZHAKKEDATHU J N , STRAUS S K . Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo[J]. Biomolecules, 2018, 8 (1): 4.
doi: 10.3390/biom8010004 |
8 | ZHANG Q Y , YAN Z B , MENG Y M , et al. Antimicrobial peptides: mechanism of action, activity and clinical potential[J]. Mil Med Res, 2021, 8 (1): 48. |
9 |
LI X , ZUO S Y , WANG B , et al. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides[J]. Molecules, 2022, 27 (9): 2675.
doi: 10.3390/molecules27092675 |
10 | MIYACHIRO M M, CONTRERAS-MARTEL C, DESSEN A. Penicillin-binding proteins (PBPs) and bacterial cell wall elongation complexes[M]//HARRIS J R, MARLES-WRIGHT J. Macromolecular Protein Complexes Ⅱ: Structure and Function. Cham: Springer, 2019: 273-89. |
11 | CHERRAK Y , FLAUGNATTI N , DURAND E , et al. Structure and activity of the type Ⅵ secretion system[J]. Microbiol Spectr, 2019, 7 (4): PSIB-0031-2019. |
12 |
HAYES B K , HARPER M , VENUGOPAL H , et al. Structure of a Rhs effector clade domain provides mechanistic insights into type Ⅵ secretion system toxin delivery[J]. Nat Commun, 2024, 15 (1): 8709.
doi: 10.1038/s41467-024-52950-x |
13 |
DING J J , WANG W , FENG H , et al. Structural insights into the Pseudomonas aeruginosa type Ⅵ virulence effector Tse1 bacteriolysis and self-protection mechanisms[J]. J Biol Chem, 2012, 287 (32): 26911- 26920.
doi: 10.1074/jbc.M112.368043 |
14 |
ALLSOPP L P , WOOD T E , HOWARD S A , et al. RsmA and AmrZ orchestrate the assembly of all three type Ⅵ secretion systems in Pseudomonas aeruginosa[J]. Proc Natl Acad Sci U S A, 2017, 114 (29): 7707- 7712.
doi: 10.1073/pnas.1700286114 |
15 | 岳舒. 鳗弧菌MHK3株T6SS的功能性表达及抗菌特性[D]. 青岛: 中国海洋大学, 2015. |
YUE S. Functional expression of T6SS of Vibrio anguillarum MHK3 and its antibacterial properties[D]. Qingdao: Ocean University of China, 2015. (in Chinese) | |
16 | 宋莉. 假结核耶尔森氏菌双功能效应蛋白Tce2参与细菌间竞争新机制研究[D]. 杨凌: 西北农林科技大学, 2022. |
SONG L. Study on the new mechanism of bifunctional effector Tce2 in Yersinia pseudotuberculosis participating in bacterial competition[D]. Yangling: Northwest A&F University, 2022. (in Chinese) | |
17 | 傅唯轩. Tae4的原核表达及对两种革兰氏阳性菌抑菌作用研究[D]. 合肥: 安徽农业大学, 2023. |
FU W X. Prokaryotic expression of Tae4 and its inhibitory effect on two Gram-positive bacteria[D]. Hefei: Anhui Agricultural University, 2023. (in Chinese) | |
18 |
DVORAK P , CHRAST L , NIKEL P I , et al. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway[J]. Microb Cell Fact, 2015, 14, 201.
doi: 10.1186/s12934-015-0393-3 |
19 |
SINGH R P , KUMARI K . Bacterial type Ⅵ secretion system (T6SS): an evolved molecular weapon with diverse functionality[J]. Biotechnol Lett, 2023, 45 (3): 309- 331.
doi: 10.1007/s10529-023-03354-2 |
20 |
CHEN Z D , MAO Y K , SONG Y Z , et al. Refined egoist: the toxin-antitoxin immune system of T6SS[J]. Microb Pathog, 2024, 196, 106991.
doi: 10.1016/j.micpath.2024.106991 |
21 |
BENZ J , SENDLMEIER C , BARENDS T R M , et al. Structural insights into the effector-immunity system Tse1/Tsi1 from Pseudomonas aeruginosa[J]. PLoS One, 2012, 7 (7): e40453.
doi: 10.1371/journal.pone.0040453 |
22 |
JIANG X L , LI H Z , MA J Y , et al. Role of Type Ⅵ secretion system in pathogenic remodeling of host gut microbiota during Aeromonas veronii infection[J]. ISME J, 2024, 18 (1): wrae053.
doi: 10.1093/ismejo/wrae053 |
23 |
PÉREZ-LORENTE A I , MOLINA-SANTIAGO C , DE VICENTE A , et al. Sporulation activated via σW protects Bacillus from a tse1 peptidoglycan hydrolase type Ⅵ secretion system effector[J]. Microbiol Spectr, 2023, 11 (2): e0504522.
doi: 10.1128/spectrum.05045-22 |
24 |
SIMAS R G , PESSOA JUNIOR A , LONG P F . Mechanistic aspects of IPTG (isopropylthio-β-galactoside) transport across the cytoplasmic membrane of Escherichia coli-a rate limiting step in the induction of recombinant protein expression[J]. J Ind Microbiol Biotechnol, 2023, 50 (1): kuad034.
doi: 10.1093/jimb/kuad034 |
25 |
TOLIA N H , JOSHUA-TOR L . Strategies for protein coexpression in Escherichia coli[J]. Nat Methods, 2006, 3 (1): 55- 64.
doi: 10.1038/nmeth0106-55 |
26 |
BANEYX F , MUJACIC M . Recombinant protein folding and misfolding in Escherichia coli[J]. Nat Biotechnol, 2004, 22 (11): 1399- 1408.
doi: 10.1038/nbt1029 |
27 |
ALVAREZ L , HERNANDEZ S B , TORRENS G , et al. Control of bacterial cell wall autolysins by peptidoglycan crosslinking mode[J]. Nat Commun, 2024, 15 (1): 7937.
doi: 10.1038/s41467-024-52325-2 |
28 |
SHANG G J , LIU X H , LU D F , et al. Structural insight into how Pseudomonas aeruginosa peptidoglycanhydrolase Tse1 and its immunity protein Tsi1 function[J]. Biochem J, 2012, 448 (2): 201- 211.
doi: 10.1042/BJ20120668 |
29 |
RUSSELL A B , HOOD R D , BUI N K , et al. Type Ⅵ secretion delivers bacteriolytic effectors to target cells[J]. Nature, 2011, 475 (7356): 343- 347.
doi: 10.1038/nature10244 |
30 | 李翠翠, 马万鹏, 张毅, 等. 新疆某奶牛场奶源金黄色葡萄球菌分离鉴定、毒力基因检测和耐药性分析[J]. 动物医学进展, 2023, 44 (11): 40- 46. |
LI C C , MA W P , ZHANG Y , et al. Isolation, identification, virulence gene detection and drug resistance analysis of Staphylococcus aureus from milk in a dairy farm in Xinjiang[J]. Progress In Veterinary Medicine, 2023, 44 (11): 40- 46. | |
31 | 甘卫泽, 李益涛, 曹梦园, 等. 某规模化牧场致奶牛乳房炎金黄色葡萄球菌的鉴定及耐药性分析[J]. 中国奶牛, 2020 (11): 45- 48. |
GAN W Z , LI Y T , CAO M Y , et al. Identification and drug resistance analysis of Staphylococcus aureus mastitis in dairy cows from a large-scale pasture[J]. China Dairy Cattle, 2020 (11): 45- 48. |
[1] | JI Xing, LI Jun, WANG Ran, HE Tao. Research Progress on Virulence Regulation and Antivirulence Drugs of Staphylococcus aureus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1594-1607. |
[2] | Hengjie CUI, Jinlong QIN, Zhihao ZHU, Xue BAO, Shaowen LI, Xianrong MENG. Correlation Analysis of Benzalkonium Bromide Sensitivity and Biofilm Formation Ability in Staphylococcus aureus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3669-3677. |
[3] | HE Xiaolan, ZHAO Yankun, MENG Lu, LIU Huimin, GAO Jiaojiao, ZHENG Nan. Research Progress in Heteroresistance of Staphylococcus aureus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1432-1445. |
[4] | WU Zihao, CAI Yilong, TUO Haixin, CHEN Wei. Pathogenicity Analysis of a PVL+ ST22 Staphylococcus aureus Isolated from Equine Raw Milk [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 718-726. |
[5] | CHEN Songbiao, SHANG Ke, DU Fuxi, YU Zuhua, LI Jing, JIA Yanyan, LIAO Chengshui, ZHANG Chunjie, DING Ke, CHENG Xiangchao. Research Process of Assembly, Structural Features, and Secretion Regulatory Networks of Type VI Secretion System in Salmonella [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2252-2263. |
[6] | SUN Panpan, CAO Zhigang, LING Xiaoya, SUN Na, SUN Yaogui, LI Hongquan. Comparison of Anti-inflammatory Effects of Matrine Combined with Different Antibiotics [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4411-4421. |
[7] | JIANG Nansong, JI Xing, WANG Yaxin, SUN Chengtao, WANG Yang, CHEN Hongmei, CHENG Longfei, HUANG Yu, WU Congming. Prevalence and Transduction of Prophages in Methicillin-resistant Staphylococcus aureus ST9 of Swine Origin [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 338-350. |
[8] | MAO Yanni, CHANG Jiawei, LI Na, WANG Xin, KANG Xinyun, MA Qiang, MA Liang, WANG Guiqin. Transcriptome Differential Expression Analysis of Staphylococcus aureus in Biofilm State and Planktonic State [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2697-2707. |
[9] | LU Wanqing, ZHAO Shasha, JIANG Songhong, TONG Zhizi, HUANG Danni, GUO Jianhua, WU Junwei, ZHOU Yang. Effect of Staphylococcus aureus on IFN-α Production in BV2 Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2633-2641. |
[10] | WANG Di, YU Ying. Research Progress on Transcriptomics and Epigenetics of Bovine S. aureus Mastitis Resistance [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 329-338. |
[11] | ZHANG Jinning, QIAN Mengying, TANG Yongjie, MI Siyuan, SHI Kerong, YU Ying. The Adhesion Effect of Staphylococcus aureus Surface Protein A on Dairy Cattle Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(5): 1369-1377. |
[12] | MA Qiang, YANG Rui, WAN Jiahong, CHANG Jiawei, WEI Yanqin, WANG Guiqin. Study on β-lactamase and Its Action Mode of Staphylococcus aureus Isolated from Cows in Ningxia [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 1138-1148. |
[13] | LUO Mengyou, TANG Cheng, ZHAO Yanying, CHEN Juan, TANG Junni. The Study of Copper Sulfate Solution Induction on the Resistance Effect of Methicillin-resistant Staphylococcus aureus [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(4): 841-850. |
[14] | MA Qiang, WANG Yihui, CHANG Jiawei, WAN Jiahong, WEI Yanqin, WANG Guiqin. The Relationship between Cell Wall Thickening of Staphylococcus aureus and Resistance to β-lactams [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 602-611. |
[15] | LIU Dandan, CUI Changyong, ZHANG Chi, LIU Mingjiang. Research Progress on the Staphylococcus aureus Immune Evasion in Bovine Mastitis [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(12): 2964-2971. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||