

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (4): 1813-1824.doi: 10.11843/j.issn.0366-6964.2025.04.029
• Animal Nutrition And Feeds • Previous Articles Next Articles
WU Xiuju(
), XIA Pei(
), LUO Yihao, LUO Jinwei, XUE Mengdi, KE Yanhang, LI Juan, LÜ Jingzhi*(
)
Received:2024-07-04
Online:2025-04-23
Published:2025-04-28
Contact:
LÜ Jingzhi
E-mail:2198145801@qq.com;513136840@qq.com;ljzzl-66@163.com
CLC Number:
WU Xiuju, XIA Pei, LUO Yihao, LUO Jinwei, XUE Mengdi, KE Yanhang, LI Juan, LÜ Jingzhi. Effect of Dietary Lactulose Supplementation on Growth Performance, Serum Parameters and Meat Quality in Meat Rabbits[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1813-1824.
Table 1
Composition and nutrient levels of the basal diet (air-dried basis) %"
| 项目 Item | 组别 Group | |||
| 对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | |
| 玉米 Corn | 24.00 | 24.00 | 23.45 | 23.95 |
| 豆粕 Soybean meal | 12.00 | 12.20 | 12.35 | 12.35 |
| 葵花粕 Sunflowerseed meal | 6.00 | 6.00 | 6.00 | 6.00 |
| 麦麸 Wheat bran | 19.30 | 18.60 | 18.50 | 17.00 |
| 苜蓿 Alfalfa | 20.30 | 20.30 | 20.30 | 20.30 |
| 统糠 Grain chaff | 7.50 | 7.50 | 7.50 | 7.50 |
| 米糠 Rice chaff | 9.00 | 9.00 | 9.00 | 9.00 |
| 乳果糖 Lactose | 0.00 | 0.50 | 1.00 | 2.00 |
| 磷酸氢钙 CaHPO4 | 1.20 | 1.20 | 1.20 | 1.20 |
| 食盐 NaCl | 0.50 | 0.50 | 0.50 | 0.50 |
| 预混料 Premix1 | 0.20 | 0.20 | 0.20 | 0.20 |
| 合计 Total | 100.00 | 100.00 | 100.00 | 100.00 |
| 营养水平 Nutrient levels | ||||
| 消化能/(MJ·kg-1) DE | 10.24 | 10.23 | 10.21 | 10.12 |
| 粗蛋白 CP | 15.92 | 16.10 | 15.54 | 15.70 |
| 粗纤维 CF | 13.10 | 13.03 | 13.00 | 13.20 |
| 粗脂肪 EE | 3.52 | 3.61 | 3.67 | 4.02 |
| 钙 Ca | 1.14 | 1.19 | 1.14 | 1.20 |
| 磷 P | 0.66 | 0.65 | 0.65 | 0.62 |
| 赖氨酸 Lys | 0.751 | 0.752 | 0.754 | 0.747 |
| 蛋氨酸 Met | 0.088 | 0.090 | 0.090 | 0.096 |
Table 2
Effect of LAC on growth performance of meat rabbits"
| 项目 Item | 组别 Group | P值 P-value | |||
| 对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | ||
| 初始体重/kg IBW | 0.96±0.01 | 0.96±0.01 | 0.93±0.01 | 0.97±0.01 | 0.176 |
| 14 d平均体重/kg ABW | 1.63±0.02 | 1.78±0.04 | 1.69±0.05 | 1.70±0.02 | 0.126 |
| 28 d平均体重/kg ABW | 2.32±0.03 | 2.30±0.03 | 2.28±0.03 | 2.34±0.03 | 0.503 |
| 第1~14天 Days 1 to 14 | |||||
| 平均日采食量(g·d-1) ADFI | 94.55±2.12 | 95.13±3.06 | 88.66±1.55 | 95.65±3.06 | 0.209 |
| 平均日增重(g·d-1) ADG | 48.12±2.08 | 44.76±1.59 | 46.12±1.77 | 50.00±2.10 | 0.247 |
| 料重比 F/G | 2.10±0.07 | 1.94±0.05 | 1.90±0.07 | 1.92±0.06 | 0.129 |
| 第15~28天 Days 15 to 28 | |||||
| 平均日采食量(g·d-1) ADFI | 142.66±2.08ABab | 129.92±4.83Bb | 138.77±1.55ABab | 147.70±3.43Aa | 0.007 |
| 平均日增重(g·d-1) ADG | 48.16±1.41 | 48.15±1.07 | 48.94±1.08 | 48.21±0.65 | 0.944 |
| 料重比 F/G | 2.97±0.07 | 2.71±0.13 | 2.84±0.07 | 3.07±0.08 | 0.058 |
| 第1~28天 Days 1 to 28 | |||||
| 平均日采食量(g·d-1) ADFI | 121.61±1.81ABab | 115.64±2.22Bb | 118.09±2.13ABb | 126.61±1.86Aa | 0.006 |
| 平均日增重(g·d-1) ADG | 47.78±1.00b | 48.07±0.50b | 49.13±0.33ab | 51.02±0.63a | 0.010 |
| 料重比 F/G | 2.55±0.03a | 2.47±0.02ab | 2.40±0.04b | 2.41±0.03b | 0.012 |
Table 3
Effect of LAC on apparent nutrient digestibility of diet %"
| 项目 Item | 组别 Group | P值 P-value | |||
| 对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | ||
| 干物质 DM | 61.59±0.52b | 61.81±0.55ab | 61.27±0.38b | 63.45±0.32a | 0.014 |
| 粗灰分 Ash | 33.93±1.22 | 35.74±1.11 | 35.08±2.10 | 35.92±1.35 | 0.781 |
| 粗蛋白 CP | 71.97±0.67 | 72.26±0.71 | 72.73±0.92 | 74.46±0.43 | 0.089 |
| 粗脂肪 EE | 83.66±0.96b | 83.41±0.79b | 84.12±0.29ab | 86.39±0.49a | 0.023 |
| 粗纤维 CF | 4.00±0.73Bc | 7.16±0.85Bb | 4.82±0.42Bab | 13.75±0.44Aa | <0.001 |
| 中性洗涤纤维 NDF | 41.98±1.15Bb | 45.07±0.86Bb | 41.99±0.57Bb | 52.49±0.56Aa | <0.001 |
| 酸性洗涤纤维 ADF | 17.38±1.53ABb | 19.51±0.95ABab | 17.10±1.04Bb | 22.61±0.56Aa | 0.005 |
| 钙 Ca | 39.88±1.05Bb | 41.68±1.14Bb | 38.84±1.64Bb | 51.70±1.34Aa | <0.001 |
| 磷 P | 41.83±1.60 | 43.07±1.36 | 42.09±1.80 | 47.40±0.75 | 0.043 |
Table 4
Effect of LAC on serum biochemical indexes in meat rabbits"
| 项目 Item | 组别 Group | P值 P-value | |||
| 对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | ||
| 谷草转氨酶/(U·L-1) AST | 45.83±6.90 | 41.17±6.11 | 48.50±6.76 | 57.83±4.92 | 0.311 |
| 碱性磷酸酶/(U·L-1) ALP | 162.50±10.09 | 158.50±15.79 | 185.33±13.74 | 163.00±10.09 | 0.448 |
| 总蛋白/(g·L-1) TP | 54.87±1.15ab | 53.30±0.89ab | 57.12±2.25a | 50.12±0.96b | 0.017 |
| 白蛋白/(g·L-1) ALB | 33.37±0.52 | 32.88±0.74 | 34.33±1.31 | 31.42±0.48 | 0.128 |
| 球蛋白/(g·L-1) GLB | 21.50±1.27ab | 20.42±0.33ab | 22.78±1.14a | 18.70±0.76b | 0.041 |
| ALB/GLB | 1.57±0.09 | 1.63±0.05 | 1.52±0.06 | 1.68±0.07 | 0.356 |
| 葡萄糖/(mmol·L-1) GLU | 3.76±0.18bB | 4.49±0.55bAB | 4.41±0.31bB | 6.43±0.41aA | <0.001 |
| 胆固醇/(mmol·L-1) TC | 2.07±0.14 | 2.24±0.18 | 2.48±0.18 | 2.09±0.19 | 0.333 |
Table 5
Effect of LAC on serum antioxidant indexes in meat rabbits"
| 项目 Item | 组别 Group | P值 P-value | |||
| 对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | ||
| 血清T-AOC /(U·mL-1) | 4.36±0.27 | 4.54±0.66 | 4.50±0.38 | 4.86±0.77 | 0.933 |
| 血清T-SOD /(U·mL-1) | 151.83±1.82 | 154.60±7.00 | 152.39±7.18 | 149.84±8.69 | 0.967 |
| 血清MDA /(mmol·mL-1) | 4.48±0.21a | 3.86±0.27ab | 3.71±0.27ab | 3.30±0.27b | 0.027 |
Table 6
Effects of different levels of LAC treatments on muscle indexes and conventional nutrients in meat rabbits"
| 项目 Item | 组别 Group | P值 P-value | |||
| 对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | ||
| 背最长肌 Longissimus dorsi | |||||
| 熟肉率/% Cooking rate | 65.29±0.86 | 66.22±0.49 | 68.35±1.18 | 67.49±0.66 | 0.067 |
| 失水率/% Water loss rate | 6.48±0.65 | 7.46±0.82 | 7.24±0.76 | 7.11±0.53 | 0.781 |
| pH | 5.65±0.02b | 5.66±0.02ab | 5.70±0.01ab | 5.73±0.02a | 0.023 |
| 干物质/% DM | 24.73±0.42 | 25.21±0.18 | 25.13±0.22 | 25.41±0.31 | 0.444 |
| 粗灰分/% Ash | 1.27±0.02 | 1.29±0.02 | 1.31±0.02 | 1.33±0.01 | 0.057 |
| 粗蛋白/% CP | 21.50±0.11 | 21.11±0.73 | 21.16±0.09 | 21.17±0.23 | 0.194 |
| 粗脂肪/% EE | 1.18±0.01 | 1.18±0.01 | 1.18±0.01 | 1.18±0.01 | 0.984 |
| 腿肌/% Leg muscle | |||||
| 熟肉率/% Cooking rate | 71.50±22.52 | 71.02±1.31 | 69.96±0.94 | 71.49±1.25 | 0.885 |
| 失水率/% Water loss rate | 4.15±0.55ab | 4.78±0.50a | 2.69±0.23b | 3.38±0.63ab | 0.029 |
| pH | 5.96±0.03 | 6.02±0.04 | 6.02±0.03 | 6.02±0.01 | 0.454 |
| 干物质/% DM | 25.57±0.18 | 25.36±0.19 | 25.82±0.16 | 25.38±0.20 | 0.268 |
| 粗灰分/% Ash | 1.29±0.02ABab | 1.26±0.02Bb | 1.36±0.01Aa | 1.30±0.01ABab | 0.001 |
| 粗蛋白/% CP | 20.95±0.11 | 20.90±0.06 | 20.78±0.05 | 20.78±0.08 | 0.384 |
| 粗脂肪/% EE | 1.34±0.01 | 1.34±0.01 | 1.36±0.01 | 1.36±0.01 | 0.365 |
Table 7
Effects of different levels of LAC treatments on fatty acid content of longissimus dorsi of meat rabbits"
| 项目 Item | 组别 Group | P值 P-value | |||
| 对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | ||
| C6:0/% | 9.01±0.54 | 11.78±1.32 | 9.76±0.63 | 9.89±0.87 | 0.176 |
| C14:0/% | 1.28±0.30b | 1.33±0.13ab | 1.91±0.18ab | 2.04±0.17a | 0.018 |
| C15:0/% | 2.99±0.41Aa | 2.20±0.20ABab | 1.84±0.23ABb | 1.22±0.08Bb | <0.001 |
| C16:0/% | 3.69±0.25Bb | 4.34±0.23Bb | 5.82±0.36Aa | 5.57±0.20Aa | <0.001 |
| C17:0/% | 1.83±0.38 | 2.71±0.13 | 2.37±0.50 | 1.77±0.19 | 0.159 |
| C18:0/% | 3.74±0.40b | 4.80±0.14ab | 5.09±0.44a | 4.53±0.17ab | 0.032 |
| C20:0/% | 17.86±0.89ABa | 19.67±0.79Aa | 14.82±1.93ABab | 12.18±1.26Bb | 0.001 |
| C14:1/% | 1.27±0.32 | 1.23±0.15 | 1.82±0.20 | 1.90±0.19 | 0.079 |
| C16:1/% | 1.04±0.09b | 1.05±0.09b | 1.47±0.15a | 1.30±0.06ab | 0.014 |
| C18:1n9t/% | 5.30±0.47Bb | 4.82±0.40Bb | 7.37±0.53Aa | 7.53±0.28Aa | <0.001 |
| C18:1n9c/% | 0.60±0.22 | 1.11±0.19 | 1.07±0.20 | 0.38±0.17 | 0.116 |
| C18:2n6t/% | 5.01±0.48Bb | 5.63±0.47Bb | 8.42±0.62Aa | 9.48±0.49Aa | <0.001 |
| C18:2n6c/% | 1.08±0.23 | 1.38±0.74 | 1.11±0.24 | 0.81±0.10 | 0.173 |
| C18:3n3/% | 0.58±0.27a | 0.40±0.02ab | 0.34±0.02ab | 0.29±0.03b | 0.026 |
| C18:3n6/% | 0.25±0.10 | 0.12±0.03 | 0.24±0.04 | 0.24±0.01 | 0.386 |
| C20:1n9/% | 2.48±0.19Aa | 2.08±0.10ABab | 1.67±0.19BCbc | 1.27±0.12Cc | <0.001 |
| C20:3n3/% | 1.67±0.21Aa | 0.37±0.05Bb | 0.40±0.06Bb | 0.26±0.04Bb | <0.001 |
| C20:5n3/% | 0.73±0.17 | 0.56±0.05 | 0.68±0.08 | 0.60±0.04 | 0.632 |
| C22:2n6/% | 7.67±1.55 | 9.69±0.29 | 8.98±0.77 | 9.15±0.52 | 0.461 |
| C22:6n3/% | 1.53±0.17Aa | 1.27±0.09ABab | 1.04±0.09ABb | 1.00±0.07Bb | 0.005 |
| 饱和脂肪酸/% SFA | 63.83±2.77Aa | 53.95±1.27Bb | 49.85±1.52Bb | 49.63±0.63Bb | <0.001 |
| 不饱和脂肪酸/% UFA | 36.17±2.77Bb | 46.05±1.27Aa | 50.15±1.52Aa | 50.37±0.63Aa | <0.001 |
| 单不饱和脂肪酸/% MUFA | 18.06±1.72Bb | 26.44±1.01Aa | 28.68±1.55Aa | 28.30±0.71Aa | <0.001 |
| 多不饱和脂肪酸/% PUFA | 18.11±1.71b | 19.61±0.59ab | 21.47±0.54ab | 22.08±0.51a | 0.027 |
| 多不饱和脂肪酸/饱和脂肪酸P/S | 0.30±0.05Bb | 0.37±0.02ABab | 0.43±0.02Aa | 0.45±0.01Aa | 0.001 |
Table 8
Effects of different levels of LAC treatments on fatty acid content of leg muscle of meat rabbits"
| 项目 Item | 对照组 Control | 0.5%乳果糖 0.5%LAC | 1%乳果糖 1%LAC | 2%乳果糖 2%LAC | P值 P-value |
| C6:0/% | 9.29±1.23a | 5.42±0.42ab | 4.60±0.37b | 7.12±1.46ab | 0.017 |
| C14:0/% | 2.19±0.25 | 1.70±0.12 | 1.60±0.21 | 2.09±0.18 | 0.155 |
| C15:0/% | 1.63±0.16 | 1.95±0.21 | 2.32±0.20 | 1.89±0.12 | 0.069 |
| C16:0/% | 5.83±0.89Bb | 6.85±0.18ABb | 7.14±0.20ABab | 8.20±0.66Aa | <0.001 |
| C17:0/% | 2.26±0.12Bb | 3.27±0.48ABab | 4.23±0.24Aa | 2.57±0.26Bb | <0.001 |
| C18:0/% | 5.29±0.05Bb | 6.91±0.47Aa | 7.78±0.13Aa | 6.88±0.39Aa | <0.001 |
| C20:0/% | 10.88±0.98a | 9.81±0.26ab | 9.61±0.65ab | 6.59±1.39b | 0.024 |
| C14:1/% | 1.80±0.28 | 1.23±0.10 | 1.13±0.23 | 1.44±0.18 | 0.159 |
| C16:1/% | 1.50±0.10ABab | 1.28±0.19Bb | 2.03±0.13Aa | 1.44±0.08ABb | 0.007 |
| C18:1n9t/% | 6.70±0.18Bb | 6.87±0.32Bb | 7.07±0.42Bb | 9.99±0.84Aa | <0.001 |
| C18:1n9c/% | 0.62±0.14 | 0.53±0.16 | 0.76±0.19 | 0.93±0.10 | 0.374 |
| C18:2n6t/% | 10.40±0.38Bb | 12.10±0.39ABab | 12.60±0.61ABab | 15.06±1.58Aa | 0.005 |
| C18:3n3/% | 0.78±0.36 | 0.96±0.53 | 1.15±0.32 | 1.41±0.23 | 0.663 |
| C18:3n6/% | 0.37±0.05 | 0.51±0.13 | 0.71±0.18 | 0.56±0.06 | 0.175 |
| C20:1n9/% | 1.39±0.07Bbc | 1.62±0.13ABab | 1.97±0.12Aa | 1.10±0.12Bc | <0.001 |
| C20:3n3/% | 0.40±0.06ABb | 0.53±0.04ABb | 0.62±0.04Aa | 0.34±0.06Bb | 0.005 |
| C20:5n3/% | 0.70±0.04 | 0.92±0.06 | 0.91±0.04 | 0.92±0.08 | 0.02 |
| C22:2n6/% | 10.61±0.97 | 10.59±0.36 | 8.90±0.44 | 10.04±0.25 | 0.27 |
| C22:6n3/% | 1.45±0.31 | 1.89±0.32 | 1.77±0.22 | 1.48±0.29 | 0.649 |
| 饱和脂肪酸/% SFA | 51.93±1.55 | 48.94±0.56 | 48.38±0.60 | 46.85±1.76 | 0.059 |
| 不饱和脂肪酸/% UFA | 48.07±1.55 | 51.06±0.56 | 51.62±0.60 | 53.15±1.76 | 0.059 |
| 单不饱和脂肪酸/% MUFA | 22.64±0.78 | 22.47±0.36 | 23.67±0.51 | 22.38±0.65 | 0.506 |
| 多不饱和脂肪酸/% PUFA | 25.44±0.96Bb | 28.59±0.49ABab | 27.95±0.79ABab | 30.77±1.29Aa | 0.004 |
| 多不饱和脂肪酸/饱和脂肪酸P/S | 0.50±0.03Bb | 0.59±0.02ABab | 0.58±0.02ABab | 0.67±0.05Aa | 0.01 |
| 1 | 王慧, 赵程澄, 陈苑, 等. 不同时期伊高乐肉兔与美系獭兔肉质性状的比较与分析[J]. 中国畜牧杂志, 2024, 60 (7): 113- 118. |
| WANG H , ZHAO C C , CHEN Y , et al. Comparison and analysis of meat quality traits of Igaole meat rabbits and American otter rabbits in different periods[J]. Chinese Journal of Animal Science, 2024, 60 (7): 113- 118. | |
| 2 |
LI S , ZENG W , LI R , et al. Rabbit meat production and processing in China[J]. Meat Sci, 2018, 145, 320- 328.
doi: 10.1016/j.meatsci.2018.06.037 |
| 3 |
RUSZKOWSKI J , WITKOWSKI J M . Lactulose: Patient-and dose-dependent prebiotic properties in humans[J]. Anaerobe, 2019, 59, 100- 106.
doi: 10.1016/j.anaerobe.2019.06.002 |
| 4 |
KARAKAN T , TUOHY K M , JANSSEN-VAN SOLINGEN G . Low-dose lactulose as a prebiotic for improved gut health and enhanced mineral absorption[J]. Front Nutr, 2021, 8, 672925.
doi: 10.3389/fnut.2021.672925 |
| 5 |
PAN W Y , CAI S N , LATOUR J M , et al. External use of Mirabilite combined with lactulose improves postoperative gastrointestinal mobility among older patients undergoing abdominal surgery[J]. J Adv Nurs, 2021, 77 (2): 755- 762.
doi: 10.1111/jan.14640 |
| 6 |
SAHNEY A , WADHAWAN M . Encephalopathy in cirrhosis: Prevention and panagement[J]. J Clin Exp Hepatol, 2022, 12 (3): 927- 936.
doi: 10.1016/j.jceh.2021.12.007 |
| 7 |
ZHENG W , ZHAO Z , YANG Y , et al. The synbiotic mixture of lactulose and Bacillus coagulans protects intestinal barrier dysfunction and apoptosis in weaned piglets challenged with lipopolysaccharide[J]. J Anim Sci Biotechnol, 2023, 14 (1): 80.
doi: 10.1186/s40104-023-00882-9 |
| 8 |
HIRAISHI K , ZHAO F , KURAHARA L H , et al. Lactulose modulates the structure of gut microbiota and alleviates colitis-associated tumorigenesis[J]. Nutrients, 2022, 14 (3): 649.
doi: 10.3390/nu14030649 |
| 9 | VOEVODINA Y A, NOVIKOVA T V, SHEVCHUK V B, et al. Changes in calf productivity and resistance as a result of using the lactulose-based feed additive[C]//BIO Web of Conferences. EDP Sciences, 2020, 17: 00170. |
| 10 |
MADRESEH S , GHAISARI H R , HOSSEINZADEH S . Effect of lyophilized, encapsulated Lactobacillus fermentum and lactulose feeding on growth performance, heavy metals, and trace element residues in rainbow trout (Oncorhynchus mykiss) tissues[J]. Probiotics Antimicrob Proteins, 2019, 11, 1257- 1263.
doi: 10.1007/s12602-018-9487-7 |
| 11 | 蒋守群. 饲粮添加不同水平乳果糖对肉鸡生长性能、养分消化率、肉品质、相对器官重和排泄物菌群结构的影响[J]. 广东饲料, 2016, 25 (7): 51. |
| JIANG S Q . Effects of different levels of lactulose on growth performance, nutrient digestibility, meat quality, relative organ weight and excrement microbiota structure of broilers[J]. Guangdong Feed, 2016, 25 (7): 51. | |
| 12 |
HOSSAIN M M , PARK J W , KIM I H . δ-Aminolevulinic acid, and lactulose supplements in weaned piglets diet: Effects on performance, fecal microbiota, and in-vitro noxious gas emissions[J]. Livest Sci, 2016, 183, 84- 91.
doi: 10.1016/j.livsci.2015.11.021 |
| 13 |
GUEVARRA R B , KIM E S , CHO J H , et al. Gut microbial shifts by synbiotic combination of Pediococcus acidilactici and lactulose in weaned piglets challenged with Shiga toxin-producing Escherichia coli[J]. Front Vet Sci, 2023, 9, 1101869.
doi: 10.3389/fvets.2022.1101869 |
| 14 |
ELKOMY H S , KOSHICH I I , MAHMOUD S F , et al. Use of lactulose as a prebiotic in laying hens: its effect on growth, egg production, egg quality, blood biochemistry, digestive enzymes, gene expression and intestinal morphology[J]. BMC Vet Res, 2023, 19 (1): 207.
doi: 10.1186/s12917-023-03741-x |
| 15 |
ZHANG Z , CHEN X , ZHAO J T , et al. Effects of a lactulose-rich diet on fecal microbiome and metabolome in pregnant mice[J]. J Agric Food Chem, 2019, 67 (27): 7674- 7683.
doi: 10.1021/acs.jafc.9b01479 |
| 16 |
KAMPHUES J , TABELING R , STUKE O , et al. Investigations on potential dietetic effects of lactulose in pigs[J]. Livest Sci, 2007, 109 (1-3): 93- 95.
doi: 10.1016/j.livsci.2007.01.089 |
| 17 |
赵祖艳, 杨运南, 刘日亮, 等. 乳果糖和凝结芽孢杆菌合生素对断奶仔猪生长性能、养分表观消化率和血液指标的影响[J]. 动物营养学报, 2021, 33 (7): 3735- 3744.
doi: 10.3969/j.issn.1006-267x.2021.07.016 |
|
ZHAO Z Y , YANG Y N , LIU R L , et al. Effects of synbiotic containing lactulose and Bacillus coagulans synbiotics on growth performance, nutrient apparent digestibilities and blood indexes in weaned piglets[J]. Chinese Journal of Animal Nutrition, 2021, 33 (7): 3735- 3744.
doi: 10.3969/j.issn.1006-267x.2021.07.016 |
|
| 18 |
ZHAO P Y , LI H L , MOHAMMADI M , et al. Effect of dietary lactulose supplementation on growth performance, nutrient digestibility, meat quality, relative organ weight, and excreta microflora in broilers[J]. Poult Sci, 2016, 95 (1): 84- 89.
doi: 10.3382/ps/pev324 |
| 19 |
BEYNEN A C , KAPPERT H J , YU S . Dietary lactulose decreases apparent nitrogen absorption and increases apparent calcium and magnesium absorption in healthy dogs[J]. J Anim Physiol Anim Nutr (Berl), 2001, 85 (3-4): 67- 72.
doi: 10.1046/j.1439-0396.2001.00301.x |
| 20 |
ADEBOLA O O , CORCORAN O , MORGAN W A . Prebiotics may alter bile salt hydrolase activity: Possible implications for cholesterol metabolism[J]. PharmaNutrition, 2020, 12, 100182.
doi: 10.1016/j.phanu.2020.100182 |
| 21 |
DA SILVA B P , MARTINO H S D , TAKO E . Plant origin prebiotics affect duodenal brush border membrane functionality and morphology, in vivo(Gallus Gallus)[J]. Food Funct, 2021, 12 (14): 6157- 6166.
doi: 10.1039/D1FO01159F |
| 22 |
CHOE H , KOBAYASHI N , ABE K , et al. Evaluation of serum albumin and globulin in combination with c-reactive protein improves serum diagnostic accuracy for low-grade periprosthetic joint infection[J]. J Arthroplasty, 2023, 38 (3): 555- 561.
doi: 10.1016/j.arth.2022.09.011 |
| 23 | KURMASHEVA S S, МOCOЛOB А А, ГОРЛОВ И Ф, et al. Influence of new lactulose-containing fodder additives on basic morpho-biochical indicators of blood and resistance of broiler chicken[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 848(1): 012066. |
| 24 |
HASHEM M A , HASSAN A E A , ABOU-ELNAGA H M M , et al. Modulatory effect of dietary probiotic and prebiotic supplementation on growth, immuno-biochemical alterations, DNA damage, and pathological changes in E. coli-infected broiler chicks[J]. Front Vet Sci, 2022, 9, 964738.
doi: 10.3389/fvets.2022.964738 |
| 25 | SONWANE S , INGOLE R , HEDAU M , et al. Ameliorative effect of Andrographis paniculata on hematobiochemical parameters in Escherichia coli induced broilers[J]. J Pharmacogn Phytochem, 2017, 6 (6): 1284- 1288. |
| 26 |
LIN E E , SCOTT-SOLOMON E , KURUVILLA R . Peripheral innervation in the regulation of glucose homeostasis[J]. Trends Neurosci, 2021, 44 (3): 189- 202.
doi: 10.1016/j.tins.2020.10.015 |
| 27 |
CUI S , GU J , LIU X , et al. Lactulose significantly increased the relative abundance of Bifidobacterium and Blautia in mice feces as revealed by 16S rRNA amplicon sequencing[J]. J Sci Food Agric, 2021, 101 (13): 5721- 5729.
doi: 10.1002/jsfa.11181 |
| 28 |
LIM S H , CHOI C I . Potentials of raspberry ketone as a natural antioxidant[J]. Antioxidants, 2021, 10 (3): 482.
doi: 10.3390/antiox10030482 |
| 29 |
GAO H , QIN Y , ZENG J , et al. Dietary intervention with sialylated lactulose affects the immunomodulatory activities of mice[J]. J Dairy Sci, 2021, 104 (9): 9494- 9504.
doi: 10.3168/jds.2021-20327 |
| 30 | 计徐. 乳果糖和富氢水对采食镰刀菌污染玉米断奶仔猪肠道损伤保护作用的研究[D]. 南京: 南京农业大学, 2022. |
| JI X. The protective effects of cactulose and hydrogen-rich water on the intestinal injury in weaned piglets fed Fusarium contaminated maize[D]. Nanjing: Nanjing Agricultural University, 2022. | |
| 31 |
AL SHAIMA G , ABD ELRAZIK N A . Cinnamaldehyde/lactulose combination therapy alleviates thioacetamide-induced hepatic encephalopathy via targeting P2X7R-mediated NLRP3 inflammasome signaling[J]. Life Sci, 2024, 344, 122559.
doi: 10.1016/j.lfs.2024.122559 |
| 32 |
VARVARA R A , VODNAR D C . Probiotic-driven advancement: exploring the intricacies of mineral absorption in the human body[J]. Food Chem X, 2024, 21, 101067.
doi: 10.1016/j.fochx.2023.101067 |
| 33 | MOHAMMADI GHEISAR M , NYACHOTI C M , HANCOCK J D , et al. Effects of lactulose on growth, carcass characteristics, faecal microbiota, and blood constituents in broilers[J]. Vet Med (Praha), 2016, 61 (2): 90- 96. |
| 34 |
TAVANIELLO S , MAIORANO G , STADNICKA K , et al. Prebiotics offered to broiler chicken exert positive effect on meat quality traits irrespective of delivery route[J]. Poult Sci, 2018, 97 (8): 2979- 2987.
doi: 10.3382/ps/pey149 |
| 35 |
GRELA E R , ŚWITKIEWICZ M , FLOREK M , et al. Effect of Inulin source and a probiotic supplement in pig diets on carcass traits, meat quality and fatty acid composition in finishing pigs[J]. Animals, 2021, 11 (8): 2438.
doi: 10.3390/ani11082438 |
| 36 |
DONG S S , LI L Y , HAO F Y , et al. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts[J]. Poult Sci, 2024, 103 (2): 103287.
doi: 10.1016/j.psj.2023.103287 |
| 37 |
DA SILVA C I , SCHNEIDER C R , HYGINO B , et al. Performance, carcass characteristics, and meat quality of goat kids supplemented with inulin[J]. Livest Sci, 2022, 265, 105094.
doi: 10.1016/j.livsci.2022.105094 |
| 38 | LIANG Y P, JIAO D, DU X, et al. Effect of dietary Agriophyllum squarrosum on average daily gain, meat quality and muscle fatty acids in growing Tan lambs. [J]. Meat Sci, 2023, 201: 109195. |
| 39 |
WUNI R , NATHANIA E A , AYYAPPA A K , et al. Impact of lipid genetic risk score and saturated fatty acid intake on central oobesity in an Asian Indian population[J]. Nutrients, 2022, 14 (13): 2713.
doi: 10.3390/nu14132713 |
| 40 |
SHRAMKO V S , POLONSKAYA Y V , KASHTANOVA E V , et al. The short overview on the relevance of fatty acids for human cardiovascular disorders[J]. Biomolecules, 2020, 10 (8): 1127.
doi: 10.3390/biom10081127 |
| 41 | LEON-APARICIO D , SÁNCHEZ-SOLANO A , ARREOLA J , et al. Oleic acid blocks the calcium-activated chloride channel TMEM16A/ANO1[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2022, 1867 (5): 159134. |
| 42 |
LEE D K , CHOI K H , OH J N , et al. Linoleic acid reduces apoptosis via NF-κB during the in vitro development of induced parthenogenic porcine embryos[J]. Theriogenology, 2022, 187, 173- 181.
doi: 10.1016/j.theriogenology.2022.05.003 |
| 43 |
AL-BAADANI H H , ALHOTAN R A , AZZAM M M , et al. Effects of Gum Arabic (Acacia senegal) powder on characteristics of carcass and breast meat quality parameters in male broiler chickens[J]. Foods, 2023, 12, 2526.
doi: 10.3390/foods12132526 |
| 44 | ODENWALD M A, LIN H Y, LEHMANN C, et al. Bifidobacteria metabolize lactulose to optimize gut metabolites and prevent systemic infection in patients with liver disease[EB/OL]. Nat Microbiol, 2023, 8: 2033-2049(2023-10-16)[2024-07-04] https://doi.org/10.1038/s41564-023-01493-w. |
| 45 |
YANG C W , QIU M H , ZHANG Z R , et al. Galacto-oligosaccharides and xylo-oligosaccharides affect meat flavor by altering the cecal microbiome, metabolome, and transcriptome of chickens[J]. Poult Sci, 2022, 101 (11): 102122.
doi: 10.1016/j.psj.2022.102122 |
| [1] | ZHU Yun, WANG Yuming, SUN Xiaoxiao, CHEN Hui, ZHAO Feng, XIE Jingjing, CHEN Yifan, SA Renna. Effect of the Addition of Corn Gluten Meal to Low-protein Diversified Diet on Growth Performance and Digestive Characteristics of White-feathered Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1802-1812. |
| [2] | JIA Wanli, WANG Jiying, LI Jingxuan, WANG Yanping, GENG Liying, ZHANG Chuansheng, ZHAO Xueyan. Identification of Key Genes Affecting Drip Loss in Laiwu Pigs Based on Transcriptome Sequencing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1134-1146. |
| [3] | CHEN Qiong, MAO Shuaixiang, WU Longfei, YANG Chuang, SUN Baoli. lncRNA Expression Characteristics in Semitendinosus Muscle of Leiqiong Cattle and Lufeng Cattle and Its ceRNA Network Analysis in Skeletal Muscle Development and Fat Deposition [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1203-1215. |
| [4] | ZHANG Xiwen, YIN Yue, LI Xiang, WANG Min, WANG Yongfang, JIN Shuning, FENG Xinhui, ZHAO Yurong. Effects of Ursolic Acid on Breast Meat Quality and Wooden Breast of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 711-721. |
| [5] | ZHANG Yu, WANG Qiru, SHI Xinchao, GUO Ziming, HE Xin, ZHANG Tie, ZHAO Xinghua. Effects of Magnolol Solid Dispersion on Growth Performance, Serum Antioxidant Capacity and Intestinal Microbiome of Calves [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 943-952. |
| [6] | BAI Guosong, TENG Chunran, WANG Junhong, ZHONG Ruqing, MA Teng, CHEN Liang, ZHANG Hongfu. Effects of Enzymatic Corn Gluten Meal on Growth Performance and Intestinal Microorganisms of Weaned Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 953-968. |
| [7] | Jiqiao ZHANG, Yingjie CAI, Yuxiao LI, Chang CAO, Tao LI, Xiuyu BAO, Jianqin ZHANG. Comparative Analysis of Growth Performance, Immune, Intestinal Morphology, and Cecal Microbiota of Lueyang Black-bone Chickens under Different Rearing Systems [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4001-4011. |
| [8] | Yu CHEN, Ziqing XIU, Musa MGENI, Yi SHI, Junqiu ZHANG, Xiaoyu JIANG, Jingzhi LÜ, Yawang SUN. Effects of Dandelion and Akebia Extract on Growth Performance, Intestinal Health and Relative Expression of Drug Transporter Genes in Weaned Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3725-3739. |
| [9] | Bin LIU, Yan LIU, Chen ZHENG, Tao FENG. Effects of Glucosamine on Growth Performance, Antioxidant Capacity, and Immune Function in Weaned Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3246-3254. |
| [10] | Ming FENG, Xudong YI, Weijun PANG. Advances in Intestinal Microorganism Regulating Pork Quality through Skeletal Muscle Fiber Type, Intramuscular Fat Content and Skeletal Muscle Metabolism [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2304-2312. |
| [11] | Zhibin LUO, Huimin OU, Jianzhong LI, Zhiliang TAN, Jinzhen JIAO. Effects of Low Protein Diet Supplemented with Rumen-protected Amino Acids on Growth Performance, Nutrient Apparent Digestibility and Meat Quality of Hulun Buir Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2498-2509. |
| [12] | Yalin LI, Shibo ZHEN, Lin CAO, Fengxue SUN, Lihua WANG. Effects of Lactobacillus plantarum and Lactobacillus plantarum Postbiotics on Growth Performance, Immune Status and Intestinal Health of Growing Female Minks [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2530-2539. |
| [13] | Ji WANG, Xinyan ZHOU, Fangrui GUO, Qiurong XU, Dongyi WU, Yan MAO, Zhihang YUAN, Jin'e YI, Lixin WEN, Jing WU. Viola yedoensis Makino Improves the Growth Performance, Meat Quality, and Gut Microbiota of Broilers Exposed to Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2761-2774. |
| [14] | LEI Yanru, HU Xiaoyu, XU Chunhong, ZHANG Chenxi, DU Wenping, WANG Yangguang, LI Donghua, SUN Guirong, LI Wenting, KANG Xiangtao. Comparative Analysis of Growth, Carcass and Meat Quality Traits of Five Hybrid Combinations of Houdan Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1521-1535. |
| [15] | LI Tie, QI Mengdi, ZHANG Keying, WANG Jianping, BAI Shiping, ZENG Qiufeng, PENG Huanwei, XUAN Yue, LÜ Li, DING Xuemei. Effects of Dietary Probiotics Supplementation during Brood-rearing Period on Growth Performance, Serum Biochemistry, Intestinal Health and Subsequent Performance of Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1062-1076. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||