Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (4): 1473-1483.doi: 10.11843/j.issn.0366-6964.2025.04.001
• Review • Previous Articles Next Articles
WANG Jiamei1,2(), HUANG Yongzhen2, GAO Chen1, LI Junliang1, CHEN Yan1, ZHU Bo1, ZHANG Lupei1, WANG Zezhao1, GAO Huijiang1, LI Junya1,*(
), GAO Xue1,*(
)
Received:
2024-08-01
Online:
2025-04-23
Published:
2025-04-28
Contact:
LI Junya, GAO Xue
E-mail:wjm20210409@163.com;lijunya@caas.cn;gaoxue@caas.cn
CLC Number:
WANG Jiamei, HUANG Yongzhen, GAO Chen, LI Junliang, CHEN Yan, ZHU Bo, ZHANG Lupei, WANG Zezhao, GAO Huijiang, LI Junya, GAO Xue. Research Progress and Overview on Pluripotent Stem Cells in Livestock[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1473-1483.
Fig. 2
Progression from naïve to primed pluripotency[18] Progression of epiblast development in the mouse embryo and corresponding conceptual pluripotent stages. The mature blastocyst comprises 3 cell lineages: naïve epiblast (dark blue), PrE (green) and trophoblast (grey). By E6.5 lineage priming has commenced. Ectoderm, blue; mesoderm, red; definitive endoderm, orange; germline, brown"
Table 1
Culture conditions of pluripotent stem cell"
培养基Medium | 配方Formula | 细胞类型Cell type |
FBS/LIF[ | 基础培养基:KO-DMEM;FBS 15%、GlutaMAX 1%、NEAA 1%、双抗1%、β-巯基乙醇0.1 mmol· L-1、hLIF 10 ng·mL-1 | 胚胎干细胞、诱导性多能干细胞 |
2i/LIF[ | 基础培养基N2B27:DMEM/F-12 50%、Neurobasal 50%、N2 0.5%、B27 1%、双抗1%、β-巯基乙醇0.1 mmol· L-1;hLIF:10 ng·mL-1、CHIR99021:1 μmol· L-1、PD0325901:3 μmol· L-1 | 胚胎干细胞、诱导性多能干细胞 |
3i/LIF[ | 2i/LIF+A8301 | 胚胎干细胞、诱导性多能干细胞 |
3i/LAF[ | 基础培养基:N2B27、KnockOut Serum Replacement 5%、NEAA 1%、VC 50μg·mL-1;CHIR99021 1 umol· L-1、Activin A 25 ng·mL-1、WH-4-023 1 μmol· L-1、hLIF 10 ng·mL-1、FGF2 10 ng·mL-1、IWR-1-endo 2.5 μmol· L-1、Y-27632(2 μmol· L-1维持,10 μmol· L-1传代) | 原肠化前上胚层多能性干细胞 |
LCDM[ | 基础培养基:N2B27;10 ng·mL-1 hLIF、CHIR 99021(人:1 μmol· L-1,小鼠:3 μmol· L-1)(S)-(+)-马来酸二甲苯茚酸酯2 μmol· L-1、盐酸米诺环素2 μmol· L-1 | 山羊iPSCs、扩展多能干细胞、牛滋养层干细胞 |
Fig. 4
Embryoid body ultrastructure[38] Scanning electron microscopy analysis of EBs differentiated for 10 days in suspension culture. A. Endoderm layer on the EB exterior; B. Tight junctions between cells on the surface (arrows); C. Cross-sectional view of an EB showing the differences between the outer layer and the porous interior; D. The thick outer layer of cells and ECM that is formed on the exterior (arrows). Cell junctions and deposited ECM may limit homogeneous presentation of factors on the EB interior"
1 | 王全全. 人脐带华通氏胶间充质干细胞治疗肌肉衰减综合征的实验研究[D]. 济南: 山东大学, 2018. |
WANG Q Q. Experimental study of treatment of sarcopenia with human umbilical cord wharton's jelly. mesenchymal stem cells[D]. Jinan: Shandong University, 2018. (in Chinese) | |
2 |
CAO J , LI W , LI J , et al. Live birth of chimeric monkey with high contribution from embryonic stem cells[J]. Cell, 2023, 186 (23): 4996- 5014.e24.
doi: 10.1016/j.cell.2023.10.005 |
3 |
EVANS M J , KAUFMAN M H . Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292 (5819): 154- 156.
doi: 10.1038/292154a0 |
4 |
MARTIN G R . Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J]. Proc Natl Acad Sci U S A, 1981, 78 (12): 7634- 7638.
doi: 10.1073/pnas.78.12.7634 |
5 | ELKENANI M , MOHAMED B A . Murine embryonic stem cell culture, self-renewal, and differentiation[J]. Methods Mol Biol, 2022, 2520, 265- 273. |
6 | AZIZI H , ASGARI B , SKUTELLA T . Pluripotency potential of embryonic stem cell-like cells derived from mouse testis[J]. Cell J, 2019, 21 (3): 281- 289. |
7 |
EBRAHIMI M , FOROUZESH M , RAOUFI S , et al. Differentiation of human induced pluripotent stem cells into erythroid cells[J]. Stem Cell Res Ther, 2020, 11 (1): 483.
doi: 10.1186/s13287-020-01998-9 |
8 |
CHEN X , XU H , YUAN P , et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells[J]. Cell, 2008, 133 (6): 1106- 1117.
doi: 10.1016/j.cell.2008.04.043 |
9 |
MARTINS-NEVES S R , SAMPAIO-RIBEIRO G , GOMES C M F . Self-renewal and pluripotency in osteosarcoma stem cells' chemoresistance: Notch, Hedgehog, and Wnt/β-Catenin interplay with embryonic markers[J]. Int J Mol Sci, 2023, 24 (9): 8401.
doi: 10.3390/ijms24098401 |
10 |
TAKAHASHI K , YAMANAKA S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126 (4): 663- 676.
doi: 10.1016/j.cell.2006.07.024 |
11 |
DING D , SHYU W , LIN S . Mesenchymal stem cells[J]. Cell Transplant, 2011, 20 (1): 5- 14.
doi: 10.3727/096368910X |
12 |
HILL A , BRESSAN F , MURPHY B , et al. Applications of mesenchymal stem cell technology in bovine species[J]. Stem Cell Res Ther, 2019, 10 (1): 44.
doi: 10.1186/s13287-019-1145-9 |
13 |
YANG Y , LIU B , XU J , et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency[J]. Cell, 2017, 169 (2): 243- 257.e25.
doi: 10.1016/j.cell.2017.02.005 |
14 | BOROVIAK T , LOOS R , BERTONE P , et al. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification[J]. Nat Cell Biol, 2014, 16 (6): 516- 528. |
15 |
BRADLEY A , EVANS M , KAUFMAN M H , et al. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines[J]. Nature, 1984, 309 (5965): 255- 256.
doi: 10.1038/309255a0 |
16 | 刘芳远. 小鼠内胚层样干细胞系的建立与转录组分析[D]. 呼和浩特: 内蒙古大学, 2021. |
LIU F Y. Derivation and RNA-seq analysis of mouse endoderm-like stem cells[D]. Hohhot: Inner Mongolia University, 2021. | |
17 |
KINOSHITA M , BARBER M , MANSFIELD W , et al. Capture of mouse and human stem cells with features of formative pluripotency[J]. Cell Stem Cell, 2021, 28 (3): 453- 471.e8.
doi: 10.1016/j.stem.2020.11.005 |
18 |
KALKAN T , SMITH A . Mapping the route from naive pluripotency to lineage specification[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369 (1657): 20130540.
doi: 10.1098/rstb.2013.0540 |
19 |
YING Q L , NICHOLS J , CHAMBERS I , et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3[J]. Cell, 2003, 115 (3): 281- 292.
doi: 10.1016/S0092-8674(03)00847-X |
20 |
SATO N , MEIJER L , SKALTSOUNIS L , et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor[J]. Nat Med, 2004, 10 (1): 55- 63.
doi: 10.1038/nm979 |
21 |
YING Q L , WRAY J , NICHOLS J , et al. The ground state of embryonic stem cell self-renewal[J]. Nature, 2008, 453 (7194): 519- 523.
doi: 10.1038/nature06968 |
22 | SAITO S , YOKOYAMA K , TAMAGAWA T , et al. Derivation and induction of the differentiation of animal ES cells as well as human pluripotent stem cells derived from fetal membrane[J]. Hum Cell, 2005, 18 (3): 135- 141. |
23 |
ZHI M , ZHANG J , TANG Q , et al. Generation and characterization of stable pig pregastrulation epiblast stem cell lines[J]. Cell Res, 2022, 32 (4): 383- 400.
doi: 10.1038/s41422-021-00592-9 |
24 |
YANG Y , LIU B , XU J , et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency[J]. Cell, 2017, 169 (2): 243- 257.e25.
doi: 10.1016/j.cell.2017.02.005 |
25 |
GRAF U , CASANOVA E A , CINELLI P . The Role of the Leukemia inhibitory factor (LIF)-pathway in derivation and maintenance of murine pluripotent stem cells[J]. Genes (Basel), 2011, 2 (1): 280- 297.
doi: 10.3390/genes2010280 |
26 |
ACAMPORA D , DI GIOVANNANTONIO L G , GAROFALO A , et al. Functional antagonism between OTX2 and NANOG specifies a spectrum of heterogeneous identities in embryonic stem cells[J]. Stem Cell Reports, 2017, 9 (5): 1642- 1659.
doi: 10.1016/j.stemcr.2017.09.019 |
27 |
TAMM C , PIJUAN GALITO S , ANNEREN C . A comparative study of protocols for mouse embryonic stem cell culturing[J]. PLoS One, 2013, 8 (12): e81156.
doi: 10.1371/journal.pone.0081156 |
28 |
YING Q L , WRAY J , NICHOLS J , et al. The ground state of embryonic stem cell self-renewal[J]. Nature, 2008, 453 (7194): 519- 523.
doi: 10.1038/nature06968 |
29 | BALBASI E , GUVEN G , TERZI C N . Mouse embryonic stem cell culture in serum-containing or 2i conditions[J]. Methods Mol Biol, 2022, 2520, 275- 294. |
30 |
ZHOU H , LI W , ZHU S , et al. Conversion of mouse epiblast stem cells to an earlier pluripotency state by small molecules[J]. J Biol Chem, 2010, 285 (39): 29676- 29680.
doi: 10.1074/jbc.C110.150599 |
31 |
HU W T , YAN Q Y , FANG Y , et al. Transient folate deprivation in combination with small-molecule compounds facilitates the generation of somatic cell-derived pluripotent stem cells in mice[J]. J Huazhong Univ Sci Technolog Med Sci, 2014, 34 (2): 151- 156.
doi: 10.1007/s11596-014-1249-5 |
32 |
WANG Y , MING H , YU L , et al. Establishment of bovine trophoblast stem cells[J]. Cell Rep, 2023, 42 (5): 112439.
doi: 10.1016/j.celrep.2023.112439 |
33 | 王孟丽. Oct4、Sox2、c-Myc、Klf4-慢病毒载体构建与包装及感染人皮肤成纤维细胞的实验研究[D]. 福州: 福建医科大学, 2010. |
WANG M L. The study of construction and packing of Lentiviral vector Oct4, Sox2, c-Myc, Klf4 and infecting human skin fibroblasts[D]. Fuzhou: Fujian Medical University, 2010. (in Chinese) | |
34 |
LEE J , GO Y , KANG I , et al. Oct-4 controls cell-cycle progression of embryonic stem cells[J]. Biochem J, 2010, 426 (2): 171- 181.
doi: 10.1042/BJ20091439 |
35 |
LEE M R , PRASAIN N , CHAE H D , et al. Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming[J]. Stem Cells, 2013, 31 (4): 666- 681.
doi: 10.1002/stem.1302 |
36 |
ZHANG S , BELL E , ZHI H , et al. OCT4 and PAX6 determine the dual function of SOX2 in human ESCs as a key pluripotent or neural factor[J]. Stem Cell Res Ther, 2019, 10 (1): 122.
doi: 10.1186/s13287-019-1228-7 |
37 |
MASUI S , NAKATAKE Y , TOYOOKA Y , et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells[J]. Nat Cell Biol, 2007, 9 (6): 625- 635.
doi: 10.1038/ncb1589 |
38 |
BRATT-LEAL A M , CARPENEDO R L , MCDEVITT T C . Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation[J]. Biotechnol Prog, 2009, 25 (1): 43- 51.
doi: 10.1002/btpr.139 |
39 |
KUROSAWA H . Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells[J]. J Biosci Bioeng, 2007, 103 (5): 389- 398.
doi: 10.1263/jbb.103.389 |
40 |
STACHELSCHEID H , WULF-GOLDENBERG A , ECKERT K , et al. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors[J]. J Tissue Eng Regen Med, 2013, 7 (9): 729- 741.
doi: 10.1002/term.1467 |
41 | NELAKANT R V , KOOREMAN N G , WU J C . Teratoma formation: a tool for monitoring pluripotency in stem cell research[J]. Curr Protoc Stem Cell Biol, 2015, 32, 4A.8.1- 4A.8.17. |
42 |
GAO X , NOWAK-IMIALEK M , CHEN X , et al. Establishment of porcine and human expanded potential stem cells[J]. Nat Cell Biol, 2019, 21 (6): 687- 699.
doi: 10.1038/s41556-019-0333-2 |
43 |
RUAN D , XUAN Y , TAM TTKK , et al. An optimized culture system for efficient derivation of porcine expanded potential stem cells from preimplantation embryos and by reprogramming somatic cells[J]. Nat Protoc, 2024, 19 (6): 1710- 1749.
doi: 10.1038/s41596-024-00958-4 |
44 |
ZHOU M , ZHANG M , GUO T , et al. Species origin of exogenous transcription factors affects the activation of endogenous pluripotency markers and signaling pathways of porcine induced pluripotent stem cells[J]. Front Cell Dev Biol, 2023, 11, 1196273.
doi: 10.3389/fcell.2023.1196273 |
45 | CAO S , WANG F , CHEN Z , et al. Isolation and culture of primary bovine embryonic stem cell colonies by a novel method[J]. J Exp Zool A Ecol Genet Physiol, 2009, 311 (5): 368- 376. |
46 |
MARUOTTI J , MUNOZ M , DEGRELLE S A , et al. Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors[J]. Mol Reprod Dev, 2012, 79 (7): 461- 477.
doi: 10.1002/mrd.22051 |
47 |
HAN X , HAN J , DING F , et al. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells[J]. Cell Res, 2011, 21 (10): 1509- 1512.
doi: 10.1038/cr.2011.125 |
48 |
SUMER H , LIU J , MALAVER-ORTEGA L F , et al. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts[J]. J Anim Sci, 2011, 89 (9): 2708- 2716.
doi: 10.2527/jas.2010-3666 |
49 |
KAWAGUCHI T , TSUKIYAMA T , KIMURA K , et al. Generation of naïve bovine induced pluripotent stem cells using PiggyBac transposition of doxycycline-inducible transcription factors[J]. PLoS One, 2015, 10 (8): e0135403.
doi: 10.1371/journal.pone.0135403 |
50 |
BAI C , LI X , GAO Y , et al. Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells[J]. J Pineal Res, 2016, 61 (2): 154- 167.
doi: 10.1111/jpi.12334 |
51 |
SOTO D A , NAVARRO M , ZHENG C , et al. Simplification of culture conditions and feeder-free expansion of bovine embryonic stem cells[J]. Sci Rep, 2021, 11 (1): 11045.
doi: 10.1038/s41598-021-90422-0 |
52 |
ZHAO L , GAO X , ZHENG Y , et al. Establishment of bovine expanded potential stem cells[J]. Proc Natl Acad Sci U S A, 2021, 118 (15): e2018505118.
doi: 10.1073/pnas.2018505118 |
53 |
XIAO Y , SOSA F , ROSS P J , et al. Regulation of NANOG and SOX2 expression by activin A and a canonical WNT agonist in bovine embryonic stem cells and blastocysts[J]. Biol Open, 2021, 10 (11): bio058669.
doi: 10.1242/bio.058669 |
54 |
CANIZO J R , VAZQUEZ E C , KLISCH D , et al. Exogenous human OKSM factors maintain pluripotency gene expression of bovine and porcine iPS-like cells obtained with STEMCCA delivery system[J]. BMC Res Notes, 2018, 11 (1): 509.
doi: 10.1186/s13104-018-3627-8 |
55 |
PILLAI V V , KEI T G , REDDY S E , et al. Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance[J]. Anim Sci J, 2019, 90 (9): 1149- 1160.
doi: 10.1111/asj.13272 |
56 | 张学敏. 绵羊扩展多能干细胞的建立及其嵌合能力和转录图谱分析[D]. 呼和浩特: 内蒙古大学, 2022. |
ZHANG X M. Establishment of sheep extended pluripotent stem cells and analyses of chimeric capacity and transcriptional map[D]. Hohhot: Inner Mongolia University, 2022. (in Chinese) | |
57 |
BAO L , HE L , CHEN J , et al. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors[J]. Cell Res, 2011, 21 (4): 600- 608.
doi: 10.1038/cr.2011.6 |
58 |
LIU J , BALEHOSUR D , MURRAY B , et al. Generation and characterization of reprogrammed sheep induced pluripotent stem cells[J]. Theriogenology, 2012, 77 (2): 338- 346.e1.
doi: 10.1016/j.theriogenology.2011.08.006 |
59 |
SARTORI C , DIDOMENICO A I , THOMSON A J , et al. Ovine-induced pluripotent stem cells can contribute to chimeric lambs[J]. Cell Reprogram, 2012, 14 (1): 8- 19.
doi: 10.1089/cell.2011.0050 |
60 |
LIU M , ZHAO L , WANG Z , et al. Generation of sheep induced pluripotent stem cells with defined dox-inducible transcription factors via piggyBac transposition[J]. Front Cell Dev Biol, 2021, 9, 785055.
doi: 10.3389/fcell.2021.785055 |
61 |
VILARINO M , ALBA SOTO D , SOLEDAD-BOGLIOTTI Y , et al. Derivation of sheep embryonic stem cells under optimized conditions[J]. Reproduction, 2020, 160 (5): 761- 772.
doi: 10.1530/REP-19-0606 |
62 |
LI L , ZHANG D , REN Y , et al. The modification of mitochondrial energy metabolism and histone of goat somatic cells under small molecules compounds induction[J]. Reprod Domest Anim, 2019, 54 (2): 138- 149.
doi: 10.1111/rda.13304 |
63 |
SINGH A , SINGH S K , KUMAR M , et al. Establishment of Capra hircus somatic cells and induction of pluripotent stem-like cells[J]. In Vitro Cell Dev Biol Anim, 2024, 60 (1): 3- 8.
doi: 10.1007/s11626-023-00840-9 |
64 | LIU F , WANG J , YUE Y , et al. Derivation of arbas Cashmere goat induced pluripotent stem cells in LCDM with trophectoderm lineage differentiation and interspecies chimeric abilities[J]. Int J Mol Sci, 2023, 24 (19): 14728. |
65 | 罗睿杰, 曹素英. 大家畜多能干细胞的研究进展与应用前景[J]. 畜牧兽医学报, 2023, 54 (10): 4003- 4015. |
LUO R J , CAO S Y . Research progress and application prospect of livestock pluripotent stem cells[J]. Acta Veterinaeria Et Zootechnica Sinica, 2023, 54 (10): 4003- 4015. | |
66 | GENOVESE NJ , DOMEIER TL , TELUGU BP , et al. Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells[J]. Sci Rep, 2017, 7, 41833. |
[1] | ZHAO Wenxuan, GAO Xue, YU Dawei, GAO Chen, LI Junya. Establishment and Pluripotency Analysis of Induced Pluripotent Stem Cells from Mengshan Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1731-1743. |
[2] | YAN Yan, LIU Yanchen, WANG Zhongfa, LI Minjuan, HE Yunan, GUAN Weijun, JIANG Yunliang. Isolation, Culture and Differentiation Potential of Mesenchymal Stem Cells of Yolk Sacs from Rhode Island Red Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1252-1263. |
[3] | HE Haiyang, MA Baohua, PENG Sha. Research Progress on the Role and Mechanism of Mesenchymal Stem Cell-derived Exosomes in Animal Acute Renal Injury [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 115-125. |
[4] | Yingguang LÜ, Guangming JIAO, Jinfang SANG, Zhipeng KOU, Tao LIU, Yue WANG, Xiangyu LU, Chenxi PIAO, Yajun MA, Jiantao ZHANG, Hongbin WANG. The Effect of Adipose Mesenchymal Stem Cells on the Healing Process of Autologous Skin Transplantation in Bama Miniature Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3193-3204. |
[5] | Mingde ZHU, Yijing CHEN, Pengxiu DAI, Yihua ZHANG, Xinke ZHANG. Study on the Hnf1b, Pdx1, Ngn3 and Pax4/Nkx6.1 Reprograms Canine Adipose-derived MSCs to Differentiate into IPCs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3205-3212. |
[6] | TAN Ning, LI Balun, HAN Miao, LI Chenchen, JING Yuanxiang, KOU Zheng, LI Na, PENG Sha, ZHAO Xianjun, HUA Jinlian. Evaluation of Therapeutic Effect of Mitoquionl Mesylate Pretreated Adipose Derived Mesenchymal Stem Cells on Canine Diabetes Mellitus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1328-1344. |
[7] | LIU Yanchen, ZHOU Shiying, ZHANG Yang, GAO Yang, GUAN Weijun. Isolation, Culture and Biological Characteristics Study of Holstein Bovine Lung Stem Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 540-551. |
[8] | Kecheng SHEN, Jiaqiao ZHU, Zongping LIU. Research Progress on in vitro Culture and Induced Differentiation of Non-human Primate Pluripotent Stem Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4278-4289. |
[9] | TIAN Qihui, ZHANG Liang, LONG Yali. Study on the Effect of Astragalus on Proliferation of Bone Marrow Mesenchymal Stem Cells in Anoxic Microenvironment based on PI3K-AKT Signal Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 346-354. |
[10] | MA Yajun, JIAO Zhihui, LIU Xiaoning, LU Xiangyu, LIU Tao, WANG Yue, PIAO Chenxi, WANG Hongbin. Effects of Adipose-derived Mesenchymal Stem Cells on Pyroptosis of Miniature Pigs with Hepatic Ischemia-Reperfusion Combined with Hepatectomy [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 355-364. |
[11] | JIAO Guangming, LÜ Yingguang, SANG Jinfang, KOU Zhipeng, LIU Tao, WANG Yue, LU Xiangyu, PIAO Chenxi, MA Yajun, ZHANG Jiantao, WANG Hongbin. Effect of Adipose Mesenchymal Stem Cells in Combination with Methylprednisolone on Allogeneic Skin Grafts in Minipigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3533-3545. |
[12] | XU Huihao, FENG Xueqian, PIAO Xueling, SHEN Xiaojun, ZHENG Xiaobo, YANG Heng, LIN Jiahao, JIN Yipeng, LIN Degui. Comparative Study on Different Methods of Collection, Isolation, Culture and Identification of Feline Limbal Stem Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 3091-3101. |
[13] | LUO Ruijie, CAO Suying. Research Progress and Application Prospect of Livestock Pluripotent Stem Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4003-4015. |
[14] | NIU Ruili, SONG Hanan, WU Yue, WANG Yunan, GAO Yefan, GUAN Weijun, ZONG Xianchun. Isolation, Culture and Biological Characteristics of Epidermal Stem Cells from Simmental Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 168-177. |
[15] | SUN Hao, ZHE Xiaoshu, ZHANG Wenqi, HAO Fei, LI Wennan, LIU Jie, LIU Dongjun. Effects of Chaetocin on Histone Methylation Modification of Cashmere Goats ADSCs [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2380-2389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||