Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (4): 1484-1493.doi: 10.11843/j.issn.0366-6964.2025.04.002
• Review • Previous Articles Next Articles
GUO Yanyan1,2(), ZHANG Yuxin1,2, LU Rui1,2, LI Yupeng1, CHEN Longbin1, ZHANG Jinlong1, YAO Dawei1, RUAN Weibin2, ZHANG Xiaosheng1,*(
), GUO Xiaofei1,3,*(
)
Received:
2024-07-16
Online:
2025-04-23
Published:
2025-04-28
Contact:
ZHANG Xiaosheng, GUO Xiaofei
E-mail:guoyynice122@163.com;zhangxs0221@126.com;guoxfnongda@163.com
CLC Number:
GUO Yanyan, ZHANG Yuxin, LU Rui, LI Yupeng, CHEN Longbin, ZHANG Jinlong, YAO Dawei, RUAN Weibin, ZHANG Xiaosheng, GUO Xiaofei. Research Progress on the Proliferation and Differentiation of Granulosa Cells at Various Follicular Development Stages in Mammal[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1484-1493.
Table 1
Characteristics of GCs at different stages of follicular development"
GCs特点Characteristics of GCs | 原始卵泡阶段Primordial follicular stage | 初级卵泡阶段Primary follicular stage | 次级卵泡阶段Secondary follicular stage | 成熟卵泡阶段Mature follicular stage | ||
形态Morphology | 未分化单层扁平细胞 | 扁平转变为复层;单层转变为多层;数量增多 | CCs变得膨胀;呈圆形 | MGCs呈上皮细胞样 | CCs疏散且发散;细胞层变薄 | MGCs层不规则折叠 |
空间分布Spatial distribution | 围绕卵母细胞外围 | 与卵母细胞通过透明带建立间隙连接 | 增殖2-3层;围绕卵母细胞 | 紧贴在卵泡壁 | 包裹卵母细胞排出 | 黄体壁层 |
特定基因Specific genes | FSH、RSPO1、Foxl2 | FSH、AMH、ER、BDNF、TrkB | FSH、LH、HA、Slc38a3、AMH | CYP19A1、FSHR | LHR、HA | p21、p27 |
参考文献Reference | [ | [ | [ | [ | [ | [ |
1 | JAGARLAMUDI K , LIU L , ADHIKARI D , et al. Oocyte-specific deletion of pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation[J]. PLoS One, 2009, 4 (7): 61- 86. |
2 |
RICHARDS J S , PANGAS S A . The ovary: basic biology and clinical implications[J]. J Clin Invest, 2010, 120 (4): 963- 972.
doi: 10.1172/JCI41350 |
3 |
STRINGER J M , ALESI L R , WINSHIP A L , et al. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life[J]. Hum Reprod Update, 2023, 29 (4): 434- 456.
doi: 10.1093/humupd/dmad005 |
4 |
YANG X , MA J , MO L , et al. Molecular cloning and characterization of STC1 gene and its functional analyses in yak (Bos grunniens) cumulus granulosa cells[J]. Theriogenology, 2023, 208, 185- 193.
doi: 10.1016/j.theriogenology.2023.06.023 |
5 |
TU J , CHEUNG A H , CHEN C L , et al. The role of microRNAs in ovarian granulosa cells in health and disease[J]. Front Endocrinol (Lausanne), 2019, 10, 174.
doi: 10.3389/fendo.2019.00174 |
6 |
RODGERS R J , IRVING-RODGERS H F . Formation of the ovarian follicular antrum and follicular fluid1[J]. Biol Reprod, 2010, 82 (6): 1021- 1029.
doi: 10.1095/biolreprod.109.082941 |
7 |
WOODRUFF T K , SHEA L D . A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health[J]. J Assist Reprod Genet, 2011, 28 (1): 3- 6.
doi: 10.1007/s10815-010-9478-4 |
8 |
FU Y , HE C J , JI P Y , et al. Effects of melatonin on the proliferation and apoptosis of sheep granulosa cells under thermal stress[J]. Int J Mol Sci, 2014, 15 (11): 21090- 21104.
doi: 10.3390/ijms151121090 |
9 | AZARI-DOLATABAD N , BENEDETTI C , VELEZ D A , et al. Oocyte developmental capacity is influenced by intrinsic ovarian factors in a bovine model for individual embryo production[J]. Anim Reprod Sci, 2023, 249, 107- 185. |
10 | 贺名扬. 褪黑素对绵羊卵巢颗粒细胞增殖及类固醇激素分泌的影响[D]. 保定: 河北农业大学, 2024. |
HE M Y. Effects of melatonin on granulosa cell proliferation and steroid hormone secretion in sheep ovary[D]. Baoding: Hebei Agricultural University. 2024. (in Chinese) | |
11 | 李轲涵. 原始卵泡发育启动的影响因素[J]. 畜牧与饲料科学, 2007 (3): 55- 58. |
LI K H . Influencing factors of primordial follicle development[J]. Animal Husbandry and Feed Science, 2007 (3): 55- 58. | |
12 |
SHAN X , YU T , YAN X , et al. Proteomic analysis of healthy and atretic porcine follicular granulosa cells[J]. J Proteomics, 2021, 232, 104027.
doi: 10.1016/j.jprot.2020.104027 |
13 | 匡光灿, 方振宇, 于凤悦, 等. 哺乳动物黄体和卵泡中颗粒细胞的生长与凋亡调控[J]. 中国畜牧杂志, 2024, 60 (11): 9- 14. |
KUANG G C , FANG Z Y , YU F Y , et al. Regulation of granulosa cell growth and apoptosis in the mammalian corpus luteum and follicle[J]. Chinese Journal of Animal Science, 2024, 60 (11): 9- 14. | |
14 |
GAO E , TURATHUM B , WANG L , et al. The Differential metabolomes in cumulus and mural granulosa cells from human preovulatory follicles[J]. Reprod Sci, 2022, 29 (4): 1343- 1356.
doi: 10.1007/s43032-021-00691-3 |
15 | 何环山. RAF-ERK1/2通路对牛卵巢颗粒细胞合成类固醇激素的影响[D]. 杨凌: 西北农林科技大学, 2018. |
HE H S. Effects of RAF-ERK1/2 pathway on the synthesis of steroid hormones in bovine ovarian granulosa cells[D]. Yangling: Northwest A&F University, 2018. (in Chinese) | |
16 |
TURATHUM B , GAO E , CHIAN R C . The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization[J]. Cells, 2021, 10 (9): 2292.
doi: 10.3390/cells10092292 |
17 | 邢鹏, 袁博, 王娜, 等. 原代黄素化卵泡颗粒细胞氧化应激模型的建立与评价[J]. 中国计划生育和妇产科, 2022, 14 (02): 69- 72. |
XING P , YUAN B , WANG N , et al. Establishment and evaluation of oxidative stress model of follicular granulosa cells[J]. Chinese Journal of Family Planning & Gynecology, 2022, 14 (02): 69- 72. | |
18 | 马钰静, 段春辉, 贺名扬, 等. 敲除G0S2基因对绵羊卵巢颗粒细胞增殖、类固醇激素及相关基因表达的影响[J]. 生物技术通报, 2023, 39 (6): 325- 334. |
MA Y J , DUAN C H , HE M Y , et al. Effects of knockout of G0S2 gene in ovarian cell proliferation, steroid hormones and related gene expression[J]. Biotechnology Bulletin, 2023, 39 (6): 325- 334. | |
19 | 薛丽娜, 毕锡麟. WNT2在绵羊卵泡颗粒细胞的表达及功能研究[J]. 畜牧兽医学报, 2020, 51 (1): 74- 82. |
XUE L N , BI X L . Expression and function analysis of WNT2 in ovine follicular granulose cells[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (1): 74- 82. | |
20 | GHANEM K , JOHNSON A L . Response of hen pre-recruitment ovarian follicles to follicle stimulating hormone, in vivo[J]. Gen Comp Endocrinol, 2019, 270, 41- 47. |
21 | 刘瑞妍. 颗粒细胞储能行为的发现及生物学意义探究[D]. 武汉: 华中农业大学, 2023. |
LIU R Y. The discovery and biological significance of energy storage behavior in granular cells[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese) | |
22 | ARCHILIA E C , BELLO C A P , BATALHA I M , et al. Effects of follicle-stimulating hormone, insulin-like growth factor 1, fibroblast growth factor 2, and fibroblast growth factor 9 on sirtuins expression and histone deacetylase activity in bovine granulosa cells[J]. Theriogenology, 2023, 210, 1- 8. |
23 | MOGHADAM A R E , MOGHADAM M T , HEMADI M , et al. Oocyte quality and aging[J]. JBRA Assist Reprod, 2022, 26 (1): 105- 122. |
24 | RICHANI D , DUNNING K R , THOMPSON J G , et al. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence[J]. Hum Reprod Update, 2021, 27 (1): 27- 47. |
25 | REGAN S L P , KNIGHT P G , YOVICH J L , et al. Granulosa cell apoptosis in the ovarian follicle—A changing view[J]. Front Endocrinol (Lausanne), 2018, 9, 61. |
26 | 陈思润, 李自梅, 董艳鹏, 等. AMPK信号通路在原始卵泡激活中的作用及机制的研究进展[J]. 中国细胞生物学学报, 2020, 42 (12): 2197- 2204. |
CHEN S R , LI Z M , DONG Y P , et al. Research progress on the role and mechanism of AMPK signaling pathway in primordial follicular activation[J]. Chinese Journal of Cell Biology, 2019, 42 (12): 2197- 2204. | |
27 | DE CIAN M C , PAUPER E , BANDIERA R , et al. Amplification of R-spondin1 signaling induces granulosa cell fate defects and cancers in mouse adult ovary[J]. Oncogene, 2017, 36 (2): 208- 218. |
28 | FRASER H M , DUNCAN W C . SRB Reproduction, Fertility and Development Award Lecture 2008. Regulation and manipulation of angiogenesis in the ovary and endometrium[J]. Reprod Fertil Dev, 2009, 21 (3): 377- 392. |
29 | LAPOINTE E, BOERBOOM D. WNT signaling and the regulation of ovarian steroidogenesis[J/OL]. Front Biosci, 2011, 3(1): 276-285. |
30 | Cross-species analysis of ARPP19 phosphorylation during oocyte meiotic maturation charts the emergence of a new cAMP-dependent role in vertebrates[N]. Life Science Weekly, 2023-07-18(709). |
31 | RENGARAJ D , HAN J Y . Female germ cell development in chickens and humans: The chicken oocyte enriched genes convergent and divergent with the human oocyte[J]. Int J Mol Sci, 2022, 23 (19): 11412. |
32 | CONVERSE A , ZANIKER E J , AMARGANT F , et al. Recapitulating folliculogenesis and oogenesis outside the body: encapsulated in vitro follicle growth[J]. Biol Reprod, 2023, 108 (1): 5- 22. |
33 | GAN X , WANG Y , GAO S , et al. Co-culture model reveals the characteristics of theca cells and the effect of granulosa cells on theca cells at different stages of follicular development[J]. Reprod Domest Anim, 2021, 56 (1): 58- 73. |
34 | HUTT K J , MCLAUGHLIN E A , HOLLAND M K . Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis[J]. Mol Hum Reprod, 2006, 12 (2): 61- 69. |
35 | ZHANG H , RISALi S , GORRE N , et al. Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice[J]. Curr Biol, 2014, 24 (21): 2501- 2508. |
36 | KIM M H , WANG S U , YOON J D , et al. Physiological and functional roles of neurotrophin-4 during in vitro maturation of porcine cumulus-oocyte complexes[J]. Front Cell Dev Biol, 2022, 10, 908992. |
37 | 王永胜. WDR62在小鼠卵母细胞减数分裂成熟和颗粒细胞中的功能及机制研究[D]. 武汉: 华中农业大学, 2022. |
WANG Y S. The functions and mechanism of WDR62 in mouse oocytes meiotic maturation and granulosa cells[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese) | |
38 | ZHANG H , LIU K . Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood[J]. Hum Reprod Update, 2015, 21 (6): 779- 786. |
39 | PAPAPANOU M , SYRISTATIDI K , GAZOULI M , et al. The effect of stimulation protocols (GnRH Agonist vs. Antagonist) on the activity of mTOR and Hippo pathways of ovarian granulosa cells and its potential correlation with the outcomes of in vitro fertilization: A hypothesis[J]. J Clin Med, 2022, 11 (20): 6131. |
40 | LIU G , ZHENG Y , GAO H , et al. Expression of ERβ induces bovine ovarian granulosa cell autophagy via the AKT/mTOR pathway[J]. Reprod Domest Anim, 2022, 57 (9): 989- 998. |
41 | ZHANG Y , YAN Z , QIN Q , et al. Transcriptome Landscape of Human Folliculogenesis Reveals Oocyte and Granulosa Cell Interactions[J]. Mol Cell, 2018, 72 (6): 1021- 1034. |
42 | TIAN S , ZHANG H , CHANG H M , et al. Activin A promotes hyaluronan production and upregulates versican expression in human granulosa cells[J]. Biol Reprod, 2022, 107 (2): 458- 473. |
43 | 郑雪. 脑源性神经营养因子促猪卵泡颗粒细胞增殖的作用机制研究[D]. 长春: 吉林大学, 2023. |
ZHENG X. The mechanism of brain-derived neurotrophic factor promoting proliferation of porcine follicular granulosa cells[D]. Changchun : Jilin University, 2023. (in Chinese) | |
44 | FUSHⅡ M , KYOGOKU H , LEE J , et al. Change in the ability of bovine granulosa cells to elongate transzonal projections and their transcriptome changes during follicle development[J]. J Reprod Dev, 2024, 70 (6): 362- 371. |
45 | 程立立, 刘少华, 刘珊, 等. 卵丘颗粒细胞中卵母细胞分泌因子表达水平对卵母细胞成熟度的影响[J]. 中国优生与遗传杂志, 2023, 31 (5): 951- 956. |
CHENG L L , LIU S H , LIU S , et al. Expression level of oocyte secreted in the cumulus cells and its relationship with oocyte maturation[J]. Chinese Journal of Birth Health & Heredity, 2023, 31 (5): 951- 956. | |
46 | 高二梦, 千日成. 人卵丘细胞与壁颗粒细胞的差异性研究进展[J]. 国际生殖健康/计划生育杂志, 2021, 40 (5): 386- 390. |
GAO E M , QIAN R C . The differences between cumulus cells and mural granulosa cells in human[J]. Journal of International Reproductive Health/Family Planning, 2021, 40 (5): 386- 390. | |
47 | YIZHI Y , YING W . Relevant factors affecting growing follicles[J]. Chinese Journal of Reproduction and Contraception, 2020, 40 (1): 69- 77. |
48 | CUADRO F , DOS SANTOS-NETO P C , PINCZAK A , et al. Serum progesterone concentrations during FSH superstimulation of the first follicular wave affect embryo production in sheep[J]. Anim Reprod Sci, 2018, 196, 205- 210. |
49 | 刘娇容. 陕北白绒山羊卵巢颗粒细胞的体外培养及其细胞系构建[D]. 榆林: 榆林学院, 2024. |
LIU J R. In vitro culture and cell line construction of ovarian granulosa cells from Shanbei white Cashmere goats[D]. Yulin: Yulin University, 2024. (in Chinese) | |
50 | WEI X , ZHENG L , TIAN Y , et al. Tyrosine phosphatase SHP2 in ovarian granulosa cells balances follicular development by inhibiting PI3K/AKT signaling[J]. J Mol Cell Biol, 2022, 14 (7): 0- 48. |
51 | SPICER L J , SCHÜTZ L F . Effects of grape phenolics, myricetin and piceatannol, on bovine granulosa and theca cell proliferation and steroid production in vitro[J]. Food Chem Toxicol, 2022, 167, 113- 288. |
52 | KRANC W , BR ZERT M , CELICHOWSKI P , et al. "Heart development and morphogenesis" is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach[J]. Mol Med Rep, 2019, 19 (3): 1705- 1715. |
53 | 宋浩然, 冯肖艺, 张培培, 等. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55 (6): 2313- 2324. |
SONG H R , FENG X Y , ZHANG P P , et al. The mechanism of follicular granulocyte cells in follicle development in dairy cow[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (6): 2313- 2324. | |
54 | 杨耀宗. 不同鹅品种卵泡组织学差异及产蛋量候选SNPs位点鉴定[D]. 扬州: 扬州大学, 2019. |
YANG Y Z. Histology of ovarian follicles and identification of SNPs related tor egg production in different goose breeds[D]. Yangzhou: Yangzhou University, 2019. (in Chinese) | |
55 | YAMOCHI T , HASHIMOTO S , MORIMOTO Y . Mural granulosa cells support to maintain the viability of growing porcine oocytes and its developmental competence after insemination[J]. J Assist Reprod Genet, 2021, 38 (10): 2591- 2599. |
56 | STRĄCZYŃSKA P , PAPIS K , MORAWIEC E , et al. Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes[J]. Reprod Biol Endocrinol, 2022, 20 (1): 12- 37. |
57 | TIAN H , REN P , LIU K , et al. Transcriptomic comparison of ovarian granulosa cells between adult sheep and prepubertal lambs[J]. BMC Genomics, 2022, 23, 151. |
58 | BAKER T G . A quantitative and cytological study of germ cells in human ovaries.[J]. Proc R Soc Lond B Biol Sci, 1964, 19 (4): 700. |
59 | 于昊. NR4A1参与调控猪卵巢颗粒细胞分化和颗粒-黄体细胞退化的机制研究[D]. 南京: 南京农业大学, 2020. |
YU H. The involvement of NR4A1 in the Mechanism of porcine ovarian granulosa cell differentiation and granulosa-lutein cells degradation[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese) | |
60 | 郭晓飞. FecB基因影响小尾寒羊繁殖力的分子机制研究[D]. 北京: 中国农业大学, 2018. |
GUO X F. Study on molecular mechanism of FecB gene for fecundity in small tail han sheep[D]. Beijing: China Agricultural University, 2018. (in Chinese) | |
61 | DIAZ F J , WIGGLESWORTH K , EPPIG J J . Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice[J]. Dev Bioly, 2007, 305 (1): 300- 311. |
62 | WANG F , CHANG H M , et al. TGF-β1 promotes hyaluronan synthesis by upregulating hyaluronan synthase 2 expression in human granulosa-lutein cells[J]. Cell Signal, 2019, 63, 109392. |
63 | NAGYOVA E , MLYNARCIKOVA A B , NEMCOVA L , et al. Unique hyaluronan structure of expanded oocyte-cumulus extracellular matrix in ovarian follicles[J]. Endocr Regul, 2024, 58 (1): 174- 180. |
64 | SUGIMOTO A , INOUE Y , TANAKA K , et al. Effects of a gel culture system made of polysaccharides (xanthan gum and locust bean gum) on in vitro bovine oocyte development and gene expression of the granulosa cells[J]. Mol Reprod Dev, 2021, 88 (7): 516- 524. |
65 | ZHOU Y , ZHANG S , JIA Y , et al. Regulation and role of adiponectin secretion in rat ovarian granulosa cells[J]. Int J Mol Sci, 2024, 25 (10): 5155. |
66 | WANG Y , HUANG H , ZENG M , et al. Mutation of rat Zp2 causes ROS-mediated oocyte apoptosis[J]. Reproduction, 2020, 160 (3): 353- 365. |
67 | TIAN C , LIU L , YE X , et al. Functional oocytes derived from granulosa cells[J]. Cell Rep, 2019, 29 (13): 4256- 4267. |
68 | 王立斌, 王萌, 孙莹, 等. CYP19A1调控内源性雌激素合成促进牦牛COCs细胞自噬和早期发育能力[J]. 畜牧兽医学报, 2022, 53 (12): 4283- 4295. |
WANG L B , WANG M , SUN Y , et al. CYP19A1 promotes autophagy and early developmental ability of yak oocytes by regulating the levels of endogenous estradiol[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (12): 4283- 4295. |
[1] | YAN Rui, JIA Chaoyang, MA Jing, YANG Juan, LIU Xinfeng, CHEN Qiang. The Research Status and Application Prospect of 3D Culture in Livestock Oocytes and Embryos Culture [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1494-1507. |
[2] | WANG Ying, ZHANG Jiaojiao, WANG Xianzhong, QUAN Fusheng. Advances in Autophagy of Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1508-1517. |
[3] | LI Xiaowei, TIAN Wei, LIU Yuan, LI Huixia. Study on the Difference of m6A Methylation Modification in Ovarian Granulosa Cells of Hu Sheep under Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1712-1721. |
[4] | YE Rungen, LIU Yuanbo, LU Lili, Collins Amponsah Asiamah, SU Ying*. Expression of miR-215-5p in Leizhou Black Duck Tissues and Its Effect on Follicular Granulosa Cells Proliferation and Apoptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1722-1730. |
[5] | MIELIE·Madaniyati , SUN Meng, CHU Guiyan. The Regulatory Function of the Hedgehog Signaling Pathway in Follicle Development and Steroidogenesis of Animal Ovary [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 969-978. |
[6] | LIU Chenlong, JI Huayuan, LU Dan, WAN Mingchun, HU Yao, ZHOU Quanyong. Effect of FST on Proliferation, Apoptosis and Hormone Secretion of Porcine Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1242-1251. |
[7] | HE Yu, WANG Xiangyu, DI Ran, CHU Mingxing, LIANG Chen. BMP4/SMAD4 Downregulates GJA1 Gene Expression to Affect the Gap Junctional Intercellular Communication Activity in Sheep Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 679-688. |
[8] | LU Jian, MA Meng, GUO Jun, WANG Xingguo, DOU Taocun, HU Yuping, WANG Qiang, LI Yongfeng, SHAO Dan, TONG Haibing, GUO Jie, QU Liang. Studies on Key Genes and Signaling Pathways of Regulation of Energy Restriction during Rearing and Conversion to Ad libitum on the Reproductive Organ Development of Hens at the Initiation of Laying Period [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 737-754. |
[9] | SUN Yawen, CHEN Siying, LI Kang, LENG Xuan, WANG Dong, PANG Yunwei. Strategies for Alleviating Cryoinjury of Porcine Vitrified-Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 36-44. |
[10] | WANG Lei, BAI Shaocheng, WANG Sen, BAO Zhiyuan, CAI Jiawei, LIU Yan, ZHAO Bohao, WU Xinsheng, CHEN Yang. Effect of SRD5A2 on the Expression of Genes Related to Proliferation, Apoptosis and Steroid Hormone Synthesis in Rabbit Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 259-268. |
[11] | Yuhang JIA, Liangfu GUO, Runan ZHANG, Ayong ZHAO, Yufang LIU, Mingxing CHU. miR-127 Regulated the Proliferation and Differentiation of Sheep Skeletal Myoblasts and Its Transcription Factor PAX3 Screening [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3864-3875. |
[12] | 古丽米热·阿布都热依木, Xinru ZHANG, Yangsheng WU, Ying CHEN, Liqin WANG, Xinming XU, Juncheng HUANG, Jiapeng LIN. Effects of FKBP5 on Function of Sheep Follicular Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3947-3956. |
[13] | Yaxuan MENG, Yan LIU, Jing WANG, Guoshun CHEN, Tao FENG. Research Progress in the Effect of Oxidative Stress on Ovarian Function in Female Livestock [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2825-2835. |
[14] | Haoran SONG, Xiaoyi FENG, Peipei ZHANG, Hang ZHANG, Yifan NIU, Zhou YU, Pengcheng WAN, Kai CUI, Xueming ZHAO. The Mechanism of Follicular Granulosa Cells in Follicular Development in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2313-2324. |
[15] | LÜ Shiqi, ZHOU Rongyan, TIAN Shujun, CHEN Xiaoyong. Study on the Physiological Mechanism of Mitochondrial tRNA-Lys(T7719G) Gene Variation Affecting Apoptosis of Ovine Granulosa Cell [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2011-2021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||