Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (2): 953-968.doi: 10.11843/j.issn.0366-6964.2025.02.043
• Research Notes • Previous Articles
BAI Guosong(), TENG Chunran, WANG Junhong, ZHONG Ruqing, MA Teng*(
), CHEN Liang, ZHANG Hongfu
Received:
2024-03-03
Online:
2025-02-23
Published:
2025-02-26
Contact:
MA Teng
E-mail:bgsyx2@163.com;mateng@caas.cn
CLC Number:
BAI Guosong, TENG Chunran, WANG Junhong, ZHONG Ruqing, MA Teng, CHEN Liang, ZHANG Hongfu. Effects of Enzymatic Corn Gluten Meal on Growth Performance and Intestinal Microorganisms of Weaned Piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 953-968.
Table 1
Amino acid composition of corn gluten meal and enzymatic corn gluten meal (DM basis) %"
项目 Item | 玉米蛋白粉 CGM | 酶解玉米蛋白粉 MCGM |
干物质DM | 91.63 | 88.73 |
粗蛋白质CP | 68.38 | 69.21 |
总能/(MJ·kg-1)GE | 22.86 | 23.6 |
氨基酸组成AA composition | ||
必需氨基酸EAA | ||
精氨酸Arg | 2.19 | 1.79 |
组氨酸His | 1.57 | 1.31 |
异亮氨酸Ile | 3.12 | 2.45 |
亮氨酸Leu | 6 | 9.88 |
赖氨酸Lys | 1.12 | 0.91 |
蛋氨酸Met | 1.65 | 1.43 |
苯丙氨酸Phe | 4.39 | 3.67 |
苏氨酸Thr | 2.36 | 2.01 |
色氨酸Trp | 0.22 | 0.18 |
缬氨酸Val | 3.13 | 2.72 |
平均值Mean | 2.58 | 2.64 |
非必需氨基酸NEAA | ||
丙氨酸Ala | 6.45 | 5.4 |
天冬氨酸Asp | 4.03 | 3.43 |
半胱氨酸Cys | 1.18 | 0.98 |
谷氨酸Glu | 15.7 | 13.95 |
甘氨酸Gly | 2.1 | 1.74 |
脯氨酸Pro | 5.34 | 5.94 |
丝氨酸Ser | 3.61 | 3.01 |
酪氨酸Tyr | 2.98 | 2.43 |
平均值Mean | 5.17 | 4.61 |
总氨基酸TAA | 67.14 | 63.23 |
Table 2
Composition and nutrient levels of experimental diets %"
项目 Item | 玉米蛋白粉组 CGM group | 鱼粉组 FM group | 酶解玉米蛋白粉组MCGM group | ||
5% | 10% | 15% | |||
原料(风干基础) Ingredients (air-dry basis) | |||||
玉米Corn | 28.56 | 28.84 | 28.77 | 29.95 | 33.17 |
发酵豆粕Fermented soybean meal | 5.00 | 4.80 | 5.00 | 4.70 | |
次粉Wheat middlings | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
鱼粉Fish meal | 5.00 | ||||
玉米蛋白粉CGM | 5.00 | ||||
酶解玉米蛋白粉MCGM | 5.00 | 10.00 | 15.00 | ||
膨化大豆Extruded soybean | 7.50 | 8.00 | 8.00 | 4.00 | 0.00 |
标准面粉Standard flour | 10.00 | 10.00 | 13.00 | 13.00 | 13.00 |
大豆浓缩蛋白Soy protein concentrate | 3.90 | 3.50 | 3.00 | 0.00 | 0.00 |
乳清粉Whey powder | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
葡萄糖Glucose | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
膨化玉米Puffed corn | 15.00 | 15.00 | 12.00 | 13.00 | 13.00 |
豆油Soybean oil | 2.70 | 2.70 | 2.70 | 2.50 | 2.60 |
L-赖氨酸盐酸盐L-Lys·HCl | 0.93 | 0.76 | 0.97 | 1.19 | 1.43 |
DL-蛋氨酸DL-Met | 0.24 | 0.26 | 0.28 | 0.28 | 0.29 |
L-苏氨酸L-Thr | 0.28 | 0.24 | 0.31 | 0.35 | 0.40 |
L-色氨酸L-Trp | 0.07 | 0.06 | 0.09 | 0.12 | 0.17 |
L-缬氨酸L-Val | 0.28 | 0.30 | 0.34 | 0.37 | 0.40 |
预混料*Premix | 4.54 | 4.54 | 4.54 | 4.54 | 4.54 |
总计Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
营养水平(风干基础)** Nutrient levels (air-dry basis) | |||||
粗蛋白质CP | 17.28 | 17.34 | 17.26 | 17.38 | 17.41 |
粗脂肪EE | 6.33 | 6.57 | 6.11 | 5.24 | 4.59 |
粗纤维CF | 1.50 | 1.45 | 1.44 | 1.26 | 1.09 |
钙Ca | 0.53 | 0.76 | 0.52 | 0.51 | 0.50 |
总磷Total P | 0.52 | 0.64 | 0.48 | 0.46 | 0.44 |
净能/(MJ·kg-1)NE | 10.75 | 10.75 | 10.79 | 10.75 | 10.79 |
Table 3
Primer sequence"
基因 Gene | 引物序列(5′→3′) Primer sequences (5′→3′) |
β-actin-F | GCGTAGCATTTGCTGCATGA |
β-actin-R | GCGTGTGTGTAACTAGGGGT |
GAPDH-F | CGTGTCGGTTGTGGATCTGA |
GAPDH-R | TGACGAAGTGGTCGTTGAGG |
ZO-1-F | CTCCAGGCCCTTACCTTTCG |
ZO-1-R | GGGGTAGGGGTCCTTCCTAT |
Occludin-F | CAGGTGCACCCTCCAGATTG |
Occludin-R | TATGTCGTTGCTGGGTGCAT |
Claudin1-F | TTTCCTCAATACAGGAGGGAAGC |
Claudin1-R | CCCTCTCCCCACATTCGAG |
Table 4
Effects of different dietary treatments on growth performance of weaned pigs"
项目 Item | 玉米蛋白粉组 CGM group | 鱼粉组 FM group | 酶解玉米蛋白粉组 MCGM group | 标准误 SEM | P值 P-value | ||
5% | 10% | 15% | |||||
初重/kg Initial BW | 5.67 | 5.69 | 5.74 | 5.75 | 5.70 | 0.83 | 1.000 |
末重/kg Final BW | 6.72 | 7.23 | 7.35 | 6.89 | 6.73 | 1.49 | 0.500 |
平均日采食量/g ADFI | 189.29 | 194.29 | 200.00 | 172.86 | 170.71 | 24.21 | 0.371 |
平均日增重/g ADG | 104.00 | 121.48 | 124.85 | 93.73 | 96.03 | 66.19 | 0.139 |
料重比F/G | 2.90b | 1.74a | 1.76a | 2.56b | 2.50b | 0.42 | 0.004 |
粪便评分Fecal score | 2.83a | 2.91a | 2.90a | 3.62b | 3.00a | 0.19 | <0.001 |
Table 5
Effects of different dietary treatments on organ index of weaned piglets g·kg-1"
项目 Item | 玉米蛋白粉组 CGM group | 鱼粉组 FM group | 酶解玉米蛋白粉组 MCGM group | 标准误 SEM | P值 P-value | ||
5% | 10% | 15% | |||||
心脏指数Heart index | 5.02 | 7.10 | 4.99 | 5.45 | 4.30 | 1.71 | 0.252 |
肝脏指数Liver index | 27.70 | 21.71 | 28.72 | 26.25 | 27.05 | 7.17 | 0.686 |
脾脏指数Spleen index | 1.94 | 2.20 | 2.76 | 1.73 | 2.40 | 0.55 | 0.131 |
肺脏指数Lung index | 13.25 | 11.05 | 16.84 | 13.77 | 12.91 | 3.08 | 0.172 |
肾脏指数Kidney index | 6.04 | 6.32 | 5.41 | 6.13 | 6.20 | 0.80 | 0.551 |
Table 6
Effects of different dietary treatments on intestine length of weaned pigletscm"
项目 Item | 玉米蛋白粉组 CGM group | 鱼粉组 FM group | 酶解玉米蛋白粉组MCGM group | 标准误 SEM | P值 P-value | ||
5% | 10% | 15% | |||||
十二指肠Duodenum | 18.00ab | 15.75a | 16.25a | 19.25bc | 21.00c | 1.68 | 0.003 |
空肠Jejunum | 830.50 | 818.75 | 788.25 | 820.00 | 820.00 | 34.9 | 0.523 |
回肠Ileum | 17.00 | 17.50 | 17.00 | 20.00 | 18.50 | 2.31 | 0.344 |
结肠Colon | 106.25 | 104.25 | 101.25 | 108.75 | 106.25 | 10.16 | 0.872 |
Fig. 2
Effect of different dietary treatments on intestinal barriergene expression of weaned pigs A-C. The relative mRNA expression level of Claudin, Occludin, ZO-1 in Dnodenum, repectively; D-F. The relative mRNA expression level of Claudin, Occludin, ZO-1 in jejunum, respectively; G-I. The relative mRNA expression level of Claudin, Occludin, ZO-1 in ileum, respectively"
Table 7
Effect of different dietary treatments on the activities of digestive enzymes"
项目 Item | 玉米蛋白粉组 CGM group | 鱼粉组 FM group | 酶解玉米蛋白粉组MCGM group | 标准误 SEM | P值 P-value | ||
5% | 10% | 15% | |||||
十二指肠Duodenum | |||||||
淀粉酶/(U·g-1) Amylase | 27.92 | 31.27 | 26.60 | 26.23 | 27.14 | 4.06 | 0.117 |
脂肪酶/(U·g-1) Lipase | 1.17a | 1.18a | 1.13a | 0.94b | 0.92b | 0.10 | <0.001 |
胰蛋白酶/(U·mg-1) Trypsin | 463.43b | 578.27a | 590.55a | 410.25b | 402.74b | 44.85 | <0.001 |
糜蛋白酶/(U·mg-1) Chymotrypsin | 5.64b | 7.63a | 7.26a | 5.75b | 5.69b | 0.80 | <0.001 |
空肠Jejunum | |||||||
淀粉酶/(U·g-1) Amylase | 32.80b | 41.44a | 38.46a | 28.41b | 30.53b | 3.63 | <0.001 |
脂肪酶/(U·g-1) Lipase | 1.16bc | 1.25ab | 1.26a | 1.04cd | 1.08cd | 0.08 | <0.001 |
胰蛋白酶/(U·mg-1) Trypsin | 535.25b | 635.77a | 653.90a | 530.85b | 543.42b | 51.83 | <0.001 |
糜蛋白酶/(U·mg-1) Chymotrypsin | 8.07b | 9.37a | 9.52a | 7.49b | 7.42b | 0.95 | <0.001 |
1 |
LIN H X , DENG Y K , ZHU D W J , et al. Effects of partially replacing fishmeal with corn gluten meal on growth, feed utilization, digestive enzyme activity, and apparent nutrient digestibility for juvenile white shrimp, Litopenaeus vannamei[J]. Front Vet Sci, 2023, 10, 1162599.
doi: 10.3389/fvets.2023.1162599 |
2 |
WANG X C , GENG F F , WU J J , et al. Effects of β-conglycinin on growth performance, immunoglobulins and intestinal mucosal morphology in piglets[J]. Arch Anim Nutr, 2014, 68 (3): 186- 195.
doi: 10.1080/1745039X.2014.919733 |
3 |
BU X Y , LIAN X Q , ZHANG Y , et al. Effects of replacing fish meal with corn gluten meal on growth, feed utilization, nitrogen and phosphorus excretion and IGF-I gene expression of juvenile Pseudobagrus ussuriensis[J]. Aquac Res, 2018, 49 (2): 977- 987.
doi: 10.1111/are.13545 |
4 | WU Z H , YU X J , GUO J S , et al. Effects of replacing fish meal with corn gluten meal on growth performance, intestinal microbiota, mTOR pathway and immune response of abalone Haliotis discus hannai[J]. Aquacult Rep, 2022, 23, 101007. |
5 |
JACKSON N , SQUANCE E . Evaluation of maize gluten meal—peruvian fish meal mixtures as protein supplements for egg production[J]. J Sci Food Agric, 1968, 19 (7): 389- 392.
doi: 10.1002/jsfa.2740190709 |
6 |
REGOST C , ARZEL J , KAUSHIK S J . Partial or total replacement of fish meal by corn gluten meal in diet for turbot (Psetta maxima)[J]. Aquaculture, 1999, 180 (1-2): 99- 117.
doi: 10.1016/S0044-8486(99)00026-5 |
7 |
CHANAJON P , NOISA P , YONGSAWATDIGUL J . Prolyl oligopeptidase inhibition and cellular antioxidant activities of a corn gluten meal hydrolysate[J]. Cereal Chem, 2022, 99 (6): 1183- 1195.
doi: 10.1002/cche.10586 |
8 |
HUANG P M , ZHAO W K , CAI L , et al. Enhancement of functional properties, digestive properties, and in vitro digestion product physiological activity of extruded corn gluten meal by enzymatic modification[J]. J Sci Food Agric, 2024, 104 (6): 3477- 3486.
doi: 10.1002/jsfa.13233 |
9 |
FAN L , LIU X L , DENG Y P , et al. Preparation of glutamine-enriched fermented feed from corn gluten meal and its functionality evaluation[J]. Foods, 2023, 12 (23): 4336.
doi: 10.3390/foods12234336 |
10 |
SINGH U , KAUR D , MISHRA V , et al. Combinatorial approach to prepare antioxidative protein hydrolysate from corn gluten meal with dairy whey: preparation, kinetics, nutritional study and cost analysis[J]. LWT, 2022, 153, 112437.
doi: 10.1016/j.lwt.2021.112437 |
11 |
HELM E T , CURRY S , TRACHSEL J M , et al. Evaluating nursery pig responses to in-feed sub-therapeutic antibiotics[J]. PLoS One, 2019, 14 (4): e0216070.
doi: 10.1371/journal.pone.0216070 |
12 | KOGUT M H , ARSENAULT R J . Editorial: gut health: the new paradigm in food animal production[J]. Front Vet Sci, 2016, 3, 71. |
13 |
ZHAO B C , WANG T H , CHEN J , et al. Essential oils improve nursery pigs' performance and appetite via modulation of intestinal health and microbiota[J]. Anim Nutr, 2024, 16, 174- 188.
doi: 10.1016/j.aninu.2023.10.007 |
14 |
BRON P A , KLEEREBEZEM M , BRUMMER R J , et al. Can probiotics modulate human disease by impacting intestinal barrier function?[J]. Br J Nutr, 2017, 117 (1): 93- 107.
doi: 10.1017/S0007114516004037 |
15 | 王申锋, 钱明珠, 李爱心, 等. 植物提取物对感染产肠毒性大肠杆菌仔猪生长性能、粪便特性及肠道健康的影响[J]. 中国饲料, 2021, (20): 33- 36. |
WANG S F , QIAN M Z , LI A X , et al. Effects of plant extracts on growth performance, fecal characteristics and intestinal health of piglets infected with enterotoxigenic Escherichia coli[J]. China Feed, 2021, (20): 33- 36. | |
16 | LUO C Z , XIA B , ZHONG R Q , et al. Early-life nutrition interventions improved growth performance and intestinal health via the gut microbiota in piglets[J]. Front Nutr, 2021, 8, 783688. |
17 |
WU Y H , PAN X C , ZHANG S X , et al. Protective effect of corn peptides against alcoholic liver injury in men with chronic alcohol consumption: a randomized double-blind placebo-controlled study[J]. Lipids Health Dis, 2014, 13 (1): 192.
doi: 10.1186/1476-511X-13-192 |
18 |
LIN F , CHEN L , LIANG R , et al. Pilot-scale production of low molecular weight peptides from corn wet milling byproducts and the antihypertensive effects in vivo and in vitro[J]. Food Chem, 2011, 124 (3): 801- 807.
doi: 10.1016/j.foodchem.2010.06.099 |
19 |
POTKI N , FALAHATKAR B , ALIZADEH A . Growth, hematological and biochemical indices of common carp Cyprinus carpio fed diets containing corn gluten meal[J]. Aquacult Int, 2018, 26 (6): 1573- 1586.
doi: 10.1007/s10499-018-0304-9 |
20 |
GHAZAGHI M , HASSANABADI A , MEHRI M . Apparent and standardized ileal amino acid digestibilities of corn, wheat, soybean meal, and corn gluten meal in quail chicks[J]. Poult Sci, 2023, 102 (2): 102314.
doi: 10.1016/j.psj.2022.102314 |
21 |
PETERSEN G I , LIU Y , STEIN H H . Coefficient of standardized ileal digestibility of amino acids in corn, soybean meal, corn gluten meal, high-protein distillers dried grains, and field peas fed to weanling pigs[J]. Anim Feed Sci Technol, 2014, 188, 145- 149.
doi: 10.1016/j.anifeedsci.2013.11.002 |
22 |
LI X X , HAN L J , CHEN L J . In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal[J]. J Sci Food Agric, 2008, 88 (9): 1660- 1666.
doi: 10.1002/jsfa.3264 |
23 |
WANG X J , ZHENG X Q , KOPPARAPU N K , et al. Purification and evaluation of a novel antioxidant peptide from corn protein hydrolysate[J]. Process Biochem, 2014, 49 (9): 1562- 1569.
doi: 10.1016/j.procbio.2014.05.014 |
24 |
JIANG X , LIU X , LIU S , et al. Growth, rumen fermentation and plasma metabolites of Holstein male calves fed fermented corn gluten meal during the postweaning stage[J]. Anim Feed Sci Technol, 2019, 249, 1- 9.
doi: 10.1016/j.anifeedsci.2019.01.012 |
25 | 李云亮, 王晓静, 阮思煜, 等. 玉米多肽制备方法及其功能活性研究进展[J]. 食品工业科技, 2022, 43 (2): 434- 441. |
LI Y L , WANG X J , RUAN S Y , et al. Research progress on preparation and functional activity of corn polypeptides[J]. Science and Technology of Food Industry, 2022, 43 (2): 434- 441. | |
26 | KYRIAZAKIS I , ALAMEER A , BU AČG KOVÁ K , et al. Toward the automated detection of behavioral changes associated with the post-weaning transition in pigs[J]. Front Vet Sci, 2023, 9, 1087570. |
27 | XU X F , HUANG P , CUI X M , et al. Effects of dietary coated lysozyme on the growth performance, antioxidant activity, immunity and gut health of weaned piglets[J]. Antibiotics (Basel), 2022, 11 (11): 1470. |
28 | OTERI M , CHIOFALO B , MARICCHIOLO G , et al. Black soldier fly larvae meal in the diet of gilthead sea bream: effect on chemical and microbiological quality of filets[J]. Front Nutr, 2022, 9, 896552. |
29 | LONG S F , LIU S J , WANG J , et al. Natural capsicum extract replacing chlortetracycline enhances performance via improving digestive enzyme activities, antioxidant capacity, anti-inflammatory function, and gut health in weaned pigs[J]. Anim Nutr, 2021, 7 (2): 305- 314. |
30 | ALUKO R E , MONU E . Functional and bioactive properties of quinoa seed protein hydrolysates[J]. J Food Sci, 2003, 68 (4): 1254- 1258. |
31 | HE L Q , ZHOU X H , HUANG N , et al. Administration of alpha-ketoglutarate improves epithelial restitution under stress injury in early-weaning piglets[J]. Oncotarget, 2017, 8 (54): 91965- 91978. |
32 | WIJTTEN P J A , VAN DER MEULEN J , VERSTEGEN M W A . A Intestinal barrier function and absorption in pigs after weaning: a review[J]. Br J Nutr, 2011, 105 (7): 967- 981. |
33 | WANG T X , YAO W L , LI J , et al. Dietary garcinol supplementation improves diarrhea and intestinal barrier function associated with its modulation of gut microbiota in weaned piglets[J]. J Anim Sci Biotechnol, 2020, 11, 12. |
34 | WU Y L , LI X , LIU H N , et al. A water-soluble β-glucan improves growth performance by altering gut microbiome and health in weaned pigs[J]. Anim Nutr, 2021, 7 (4): 1345- 1351. |
35 | ZHANG L H , LIU S J , LI M , et al. Effects of maternal 25-hydroxycholecalciferol during the last week of gestation and lactation on serum parameters, intestinal morphology and microbiota in suckling piglets[J]. Arch Anim Nutr, 2020, 74 (6): 445- 461. |
36 | DOWD S E , SUN Y , WOLCOTT R D , et al. Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs[J]. Foodborne Pathog Dis, 2008, 5 (4): 459- 472. |
37 | CASAS G A , BLAVI L , CROSS T W L , et al. Inclusion of the direct-fed microbial Clostridium butyricum in diets for weanling pigs increases growth performance and tends to increase villus height and crypt depth, but does not change intestinal microbial abundance[J]. J Anim Sci, 2020, 98 (1): skz372. |
38 | YU T , WANG Y , CHEN S C , et al. Low-molecular-weight chitosan supplementation increases the population of Prevotella in the Cecal contents of weanling pigs[J]. Front Microbiol, 2017, 8, 2182. |
39 | JAKOBSSON H E , ABRAHAMSSON T R , JENMALM M C , et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section[J]. Gut, 2014, 63 (4): 559- 566. |
40 | HE W , GAO Y A , GUO Z Q , et al. Effects of fermented wheat bran and yeast culture on growth performance, immunity, and intestinal microflora in growing-finishing pigs[J]. J Anim Sci, 2021, 99 (11): skab308. |
41 | DEVRIESE L A , HOMMEZ J , POT B , et al. Identification and composition of the streptococcal and enterococcal flora of tonsils, intestines and faeces of pigs[J]. J Appl Bacteriol, 1994, 77 (1): 31- 36. |
42 | LESER T D , AMENUVOR J Z , JENSEN T K , et al. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited[J]. Appl Environ Microbiol, 2002, 68 (2): 673- 690. |
43 | COUDERT P . The main diseases of pigs[J]. Actual Pharm, 2018, 57 (580): 50- 55. |
44 | CHEON D S , CHAE C . Outbreak of diarrhea associated with Enterococcus durans in piglets[J]. J Vet Diagn Invest, 1996, 8 (1): 123- 124. |
45 | YANG I , CLAUSSEN H , ARTHUR R A , et al. Subgingival microbiome in pregnancy and a potential relationship to early term birth[J]. Front Cell Infect Microbiol, 2022, 12, 873683. |
46 | GAO H , LIN J Q , XIONG F , et al. Urinary microbial and metabolomic profiles in kidney stone disease[J]. Front Cell Infect Microbiol, 2022, 12, 953392. |
47 | HE Y , JIANG H J , DU K Q , et al. Exploring the mechanism of Taohong Siwu decoction on the treatment of blood deficiency and blood stasis syndrome by gut microbiota combined with metabolomics[J]. Chin Med, 2023, 18 (1): 44. |
48 | ABDELSALAM N A , HEGAZY S M , AZIZ R K . The curious case of Prevotella copri[J]. Gut Microbes, 2023, 15 (2): 2249152. |
49 | FALKOW S , SCHNEIDER H , BARON L S , et al. Virulence of Escherichia-shigella genetic hybrids for the guinea pig[J]. J Bacteriol, 1963, 86 (6): 1251- 1258. |
50 | ZHANG L , WU W D , LEE Y K , et al. Spatial heterogeneity and co-occurrence of mucosal and luminal microbiome across swine intestinal tract[J]. Front Microbiol, 2018, 9, 48. |
[1] | ZHANG Yu, WANG Qiru, SHI Xinchao, GUO Ziming, HE Xin, ZHANG Tie, ZHAO Xinghua. Effects of Magnolol Solid Dispersion on Growth Performance, Serum Antioxidant Capacity and Intestinal Microbiome of Calves [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 943-952. |
[2] | Jiqiao ZHANG, Yingjie CAI, Yuxiao LI, Chang CAO, Tao LI, Xiuyu BAO, Jianqin ZHANG. Comparative Analysis of Growth Performance, Immune, Intestinal Morphology, and Cecal Microbiota of Lueyang Black-bone Chickens under Different Rearing Systems [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4001-4011. |
[3] | Xiuju YU, Yanjiao HU, Jiayue LIU, Haidong WANG, Zhiwei ZHU, Kuohai FAN, Rongrong WANG, Chenghao DUAN, Jiawei SHI, Lihua YANG. Isolation and Identification of a Chicken Source Lactobacillus salivary Strain and Its Effect on Intestinal Health of Laying Hens in Early Brood Period [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4161-4171. |
[4] | Yu CHEN, Ziqing XIU, Musa MGENI, Yi SHI, Junqiu ZHANG, Xiaoyu JIANG, Jingzhi LÜ, Yawang SUN. Effects of Dandelion and Akebia Extract on Growth Performance, Intestinal Health and Relative Expression of Drug Transporter Genes in Weaned Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3725-3739. |
[5] | Bin LIU, Yan LIU, Chen ZHENG, Tao FENG. Effects of Glucosamine on Growth Performance, Antioxidant Capacity, and Immune Function in Weaned Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3246-3254. |
[6] | Zhibin LUO, Huimin OU, Jianzhong LI, Zhiliang TAN, Jinzhen JIAO. Effects of Low Protein Diet Supplemented with Rumen-protected Amino Acids on Growth Performance, Nutrient Apparent Digestibility and Meat Quality of Hulun Buir Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2498-2509. |
[7] | Yalin LI, Shibo ZHEN, Lin CAO, Fengxue SUN, Lihua WANG. Effects of Lactobacillus plantarum and Lactobacillus plantarum Postbiotics on Growth Performance, Immune Status and Intestinal Health of Growing Female Minks [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2530-2539. |
[8] | Ji WANG, Xinyan ZHOU, Fangrui GUO, Qiurong XU, Dongyi WU, Yan MAO, Zhihang YUAN, Jin'e YI, Lixin WEN, Jing WU. Viola yedoensis Makino Improves the Growth Performance, Meat Quality, and Gut Microbiota of Broilers Exposed to Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2761-2774. |
[9] | NIU Xiaoyu, XING Yuanyuan, LI Dabiao. Advances in Regulation and Mechanism of Plant Bioactive Compounds on Intestinal Barrier Function in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1467-1477. |
[10] | LI Tie, QI Mengdi, ZHANG Keying, WANG Jianping, BAI Shiping, ZENG Qiufeng, PENG Huanwei, XUAN Yue, LÜ Li, DING Xuemei. Effects of Dietary Probiotics Supplementation during Brood-rearing Period on Growth Performance, Serum Biochemistry, Intestinal Health and Subsequent Performance of Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1062-1076. |
[11] | XIAO Le, LIU Junyuan, ZENG Wenyu, WANG Qin, HAN Wenjue, LIU Yanling, FAN Yu, XU Yuting, YANG Beini, XIAO Xiong, WANG Zili. Microbiome and Transcriptome Analyses Revealed the Regulatory Mechanism of Xiangsha Liujunzi Decoction on Ileal Injury Induced by ETEC in Weaned Piglets with Diarrhea [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 797-808. |
[12] | CHEN Xinzhu, YUE Wen, FANG Guiyou, MIAO Furong, HUANG Qingxiang, LIN Pingdong, LI Zhongrong, LIU Jing. Effects of Fibers on Growth Performance, Physiology and Biochemistry, Gastrointestinal Structure and Cecal Microflora of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5602-5619. |
[13] | MU Xiangyu, XU Yunruo, HU Jingyi, ZHOU Xinyan, ZHU Yongwen. Advances in Research on the Nutritional Requirements of Branched-Chain Amino Acids in Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 31-38. |
[14] | FU Xiyao, CHEN Lihong, CHEN Xiaoli, SUN Weili, GUO Xiaolan. Study on Dietary Crude Protein Level of 11-17 Weeks Old Female Pheasant [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2910-2923. |
[15] | WANG Mingli, WANG Meng, LI Yansen, XU Shanjin, HAN Guofeng, LI Chunmei. Effect of Different Crude Protein Levels of Artificial Crop Milk on Growth Performance,Serum Antioxidant Level and Intestinal Development of Squabs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1545-1554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||