

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (2): 643-656.doi: 10.11843/j.issn.0366-6964.2025.02.016
• Animal Genetics and Breeding • Previous Articles Next Articles
HU Hanwen1(
), BAO Tugeqin1, REN Xiujuan1, DING Wenqi1, GONG Wendian1, JIA Zijie1, SHI Lin1, MA Muren2, Baorigele 3, DUGARJAVIIN Manglai1, BAI Dongyi1,*(
)
Received:2024-05-20
Online:2025-02-23
Published:2025-02-26
Contact:
BAI Dongyi
E-mail:havyn0502@qq.com;baidongyi1983@163.com
CLC Number:
HU Hanwen, BAO Tugeqin, REN Xiujuan, DING Wenqi, GONG Wendian, JIA Zijie, SHI Lin, MA Muren, Baorigele , DUGARJAVIIN Manglai, BAI Dongyi. Comparative Study on Muscle Fiber Development Phenotype and Gene Expression Profile of Two Mongolian Horse Populations[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 643-656.
Table 1
Sequence information of primers for skeletal muscle related genes amplification"
| 基因 Gene | 引物序列(5'→3') Primer sequence |
| IVD | F:GGAAGATGGCTGACATGTACA |
| R:GCTGAGTAAAGAATCACCCCT | |
| PEAR1 | F:TTCACCATAATGCCTACCTCTC |
| R:GGATATCTGGCATGACGTACTC | |
| MYH6 | F:TACCAGTACATGCTGACAGATC |
| R:CAAAGTACTGGATGACACGTTT | |
| NYAP2 | F:CTACCCTAAAAGTCACTCGGC |
| R:GGTAAAGAGGCTGGTTAGTTCT | |
| SYT4 | F:GAGTTCTGAGAAAGACCTTGGA |
| R:AAAACTCAAGATCGTGAAGTGC | |
| CALML5 | F:CCTTCTCCAGTGTTGACAAGAA |
| R:GAACTCTTGGAAGTTGATGACG | |
| GAPDH | F:CATCATCCCTGCTTCTACTGG |
| R:TCCACGACTGACACGTTAGG |
Table 2
Comparative statistics of phenotypic information of gluteus medius between Baerhu horse and Wushen horse"
| 蒙古马类群 Mongolian horse populations | 平均肌纤维面积±标准误/μm2 Average muscle fiber area±standard error | 平均慢肌纤维占比±标准误/% Average proportion of slow muscle fibers±standard error |
| 巴尔虎马Baerhu horse | 2 592±180.92a | 10.34±0.59a |
| 乌审马Wushen horse | 1 997±73.39b | 8.14±0.81a |
| 1 | 杜明, 李蓓, 白东义, 等. 内蒙古农业大学马属动物研究中心科研进展[J]. 内蒙古农业大学学报: 自然科学版, 2022, 43 (5): 1- 15. |
| DU M , LI B , BAI D Y , et al. A review of the research work of equine research center of inner Mongolia Agricutural University[J]. Journal of Inner Mongolia Agricultural University: Natural Science Edition, 2022, 43 (5): 1- 15. | |
| 2 | 梁婷玉, 吴建平, 刘婷, 等. 肌纤维类型分类及转化机理研究进展[J]. 肉类研究, 2018, 32 (9): 55- 61. |
| LIANG T Y , WU J P , LIU T , et al. Recent progress in classification and transformation mechanism of muscle fiber types[J]. Meat Research, 2018, 32 (9): 55- 61. | |
| 3 | 欧秀琼, 李星. 猪肌肉肌纤维生长发育与类型转化及营养调控[J]. 上海农业学报, 2019, 35 (5): 149- 154. |
| OU X Q , LI X . Growth, development and type transformation of muscle fiber in pigs and its nutrition regulation[J]. Acta Agriculturae Shanghai, 2019, 35 (5): 149- 154. | |
| 4 | 侯任达, 张润, 侯欣华, 等. 畜禽肌纤维发育规律及相关基因研究进展[J]. 畜牧兽医学报, 2022, 53 (10): 3279- 3286. |
| HOU R D , ZHANG R , HOU X H , et al. Research progress on the pattern of muscle fiber development and related genes in livestock and poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (10): 3279- 3286. | |
| 5 | 贾紫洁, 图格琴, 丁文淇, 等. 蒙古马全身主要骨骼肌表型谱的构建及比较研究[J]. 畜牧兽医学报, 2023, 54 (2): 596- 607. |
| JIA Z J , BAO T , DING W Q , et al. Construction and comparative study of the phenotypic spectrum of the main skeletal muscles throughout the mongolian horse[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 596- 607. | |
| 6 | 董文芳. A型肉毒毒素注射剂量与骨骼肌形态及收缩力量效关系的动物实验研究[D]. 北京: 北京协和医学院, 2019. |
| DONG W F. Experimental study of dose-response relationship between botulinum toxin type A injecting dose and skeletal muscular morphology and strength change[D]. Beijing: Peking Union Medical College, 2019. (in Chinese) | |
| 7 | ANDERSEN J L , AAGAARD P . Effects of strength training on muscle fiber types and size; consequences for athletes training for high-intensity sport[J]. Scand J Med Sci Sports, 2010, 20 (Suppl 2): 32- 38. |
| 8 | 王鹏程. 沼泽型水牛与广西本地黄牛背最长肌生理生化指标及差异表达基因研究[D]. 南宁: 广西大学, 2018. |
| WANG P C. Physiological biochemical indexes and expression differences of longissimus muscle in swamp buffalo and native cattle[D]. Nanning: Guangxi University, 2018. (in Chinese) | |
| 9 | 贾紫洁. 蒙古马全身主要骨骼肌表型及相关基因研究[D]. 呼和浩特: 内蒙古农业大学, 2023. |
| JIA Z J. Study on the phenotype of major skeletal muscle and related gene in Mongolian horses[D]. Hohhot: Inner Mongolia Agricultural University, 2023. (in Chinese) | |
| 10 | 图格琴. 蒙古马骨骼肌纤维类型及其耐力训练适应性转化的分子机制研究[D]. 呼和浩特: 内蒙古农业大学, 2023. |
| BOU T. Study on the molecular mechanism of muscle fiber type and adaptive transition of endurance training in skeletal muscles of Mongolian horses[D]. Hohhot: Inner Mongolia Agricultural University, 2023. (in Chinese) | |
| 11 | 钱书蔓. 基于转录组和代谢组学研究伊犁母马不同组织糖原合成分子机制[D]. 乌鲁木齐: 新疆农业大学, 2023. |
| QIAN S M. Molecular mechanisms of glycogen synthesis in different tissues of Yili mares based on transcriptome and metabolomics[D]. Urumqi: Xinjiang Agricultural University, 2023. (in Chinese) | |
| 12 |
DINGBOOM E G , DIJKSTRA G , ENZERINK E , et al. Postnatal muscle fibre composition of the gluteus medius muscle of Dutch Warmblood foals; maturation and the influence of exercise[J]. Equine Vet J Suppl, 1999, 31 (S31): 95- 100.
doi: 10.1111/j.2042-3306.1999.tb05320.x |
| 13 |
ALEMAN M , NIETO J E . Gene expression of proteolytic systems and growth regulators of skeletal muscle in horses with myopathy associated with pituitary pars intermedia dysfunction[J]. Am J Vet Res, 2010, 71 (6): 664- 670.
doi: 10.2460/ajvr.71.6.664 |
| 14 |
EIVERS S S , MCGIVNEY B A , GU J , et al. PGC-1α encoded by the PPARGC1A gene regulates oxidative energy metabolism in equine skeletal muscle during exercise[J]. Anim Genet, 2012, 43 (2): 153- 162.
doi: 10.1111/j.1365-2052.2011.02238.x |
| 15 |
BAO T , HAN H , LI B , et al. The distinct transcriptomes of fast-twitch and slow-twitch muscles in Mongolian horses[J]. Comp Biochem Physiol Part D: Genomics Proteomics, 2020, 33, 100649.
doi: 10.1016/j.cbd.2019.100649 |
| 16 | 杨蕊. 内蒙古主要饲草产品的品质比较分析[D]. 呼和浩特: 内蒙古农业大学, 2023. |
| YANG R. Comparative analysis on the quality of main forage products in Inner Mongolia[D]. Hohhot: Inner Mongolia Agricultural University, 2023. (in Chinese) | |
| 17 | 马丹阳. 草场流转与草原畜牧业适度规模经营研究——以内蒙古四个牧业旗县为例[D]. 呼和浩特: 内蒙古大学, 2023. |
| MA D Y. Research on grassland rental and moderate scale management of grassland animal husbandry: a case study of four animal husbandry counties in Inner Mongolia[D]. Hohhot: Inner Mongolia University, 2023. (in Chinese) | |
| 18 | 赵雷云. 饲粮营养水平对萨湖F1代羔羊生产性能和肌纤维特性及肌肉发育相关基因表达的影响[D]. 杨凌: 西北农林科技大学, 2021. |
| ZHAO L Y. Effects of dietary nutrition levels on the production performance, muscle fiber characteristics and muscle development related gene expression of suffolk x Hu F1 lambs[D]. Yangling: Northwest A&F University, 2021. (in Chinese) | |
| 19 | 曹妍. 伊犁鹅早期生长发育规律及腿肌mRNA表达谱的研究[D]. 乌鲁木齐: 新疆农业大学, 2022. |
| CAO Y. Study on early growth and development and mRNA expression profile of leg muscle of Yili geese[D]. Urumqi: Xinjiang Agricultural University, 2022. (in Chinese) | |
| 20 | 苏强强. 绵羊MYOZ2和MYOZ3基因的克隆及在凉山半细毛羊组织的时空表达[D]. 雅安: 四川农业大学, 2011. |
| SU Q Q. Cloning of MYOZ2、MYOZ3 gene in Ovine and tissues with time expression in Liangshan semi-fine wool sheep[D]. Yaan: Sichuan Agricultural University, 2011. (in Chinese) | |
| 21 | 王孜, 陈楚雯, 侯绍云, 等. 泸宁鸡MYOZ2基因的分子特征及其在不同日龄腿肌中的表达[J]. 西南民族大学学报: 自然科学版, 2024, 50 (3): 276- 282. |
| WANG Z , CHEN C W , HOU S Y , et al. Molecular characteristics of MYOZ2 gene and its expression in leg muscles of Luning chickens at different ages[J]. Journal of Southwest Minzu University: Natural Science Edition, 2024, 50 (3): 276- 282. | |
| 22 | 严丹, 吴义景, 王志秀, 等. MYOZ2调控鸭肌肉生长的功能研究[J]. 中国家禽, 2022, 44 (5): 19- 24. |
| YAN D , WU Y J , WANG Z X , et al. Function study of MYOZ2 in regulating muscle growth in duck[J]. China Poultry, 2022, 44 (5): 19- 24. | |
| 23 | 丁文淇, 图格琴, 任秀娟, 等. 胎儿期与成年期蒙古马骨骼肌肌纤维类型转化研究[J]. 畜牧兽医学报, 2022, 53 (1): 88- 99. |
| DING W Q , BAO T , REN X J , et al. Study on muscle fiber type transformation of Mongolian horse during fetal and adult period[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (1): 88- 99. | |
| 24 |
HSU C P , MOGHADASZADEH B , HARTWIG J H , et al. Sarcomeric and nonmuscle α-actinin isoforms exhibit differential dynamics at skeletal muscle Z-lines[J]. Cytoskeleton, 2018, 75 (5): 213- 228.
doi: 10.1002/cm.21442 |
| 25 |
KOSMAS K , MICHAEL Z , PAPATHANASIOU A E , et al. Skeletal muscle dysfunction in experimental pulmonary hypertension[J]. Int J Mol Sci, 2022, 23 (18): 10912.
doi: 10.3390/ijms231810912 |
| 26 | HITACHI K , KIYOFUJI Y , YAMAGUCHI H , et al. Simultaneous loss of skeletal muscle myosin heavy chain Ⅱx and Ⅱb causes severe skeletal muscle hypoplasia in postnatal mice[J]. FASEB J, 2023, 37 (1): e22692. |
| 27 |
CALISSI G , LAM E W F , LINK W . Therapeutic strategies targeting FOXO transcription factors[J]. Nat Rev Drug Discov, 2021, 20 (1): 21- 38.
doi: 10.1038/s41573-020-0088-2 |
| 28 | JI L L , YEO D . Mitochondrial dysregulation and muscle disuse atrophy[J]. F1000Res, 2019, 8, F1000 Faculty Rev-1621. |
| 29 |
OKAMURA T , HASHIMOTO Y , OSAKA T , et al. The sodium-glucose cotransporter 2 inhibitor luseogliflozin can suppress muscle atrophy in Db/Db mice by suppressing the expression of foxo1[J]. J Clin Biochem Nutr, 2019, 65 (1): 23- 28.
doi: 10.3164/jcbn.18-114 |
| 30 |
SCHIAFFINO S , REGGIANI C . Fiber types in mammalian skeletal muscles[J]. Physiol Rev, 2011, 91 (4): 1447- 1531.
doi: 10.1152/physrev.00031.2010 |
| 31 | EBARB S M , PHELPS K J , DROUILLARD J S , et al. Effects of anabolic implants and ractopamine-HCl on muscle fiber morphometrics, collagen solubility, and tenderness of beef longissimus lumborum steaks[J]. J Anim Sci, 2017, 95 (3): 1219- 1231. |
| 32 | SCHEFFLER T L , LEITNER M B , WRIGHT S A . Technical note: protocol for electrophoretic separation of bovine myosin heavy chain isoforms and comparison to immunohistochemistry analysis[J]. J Anim Sci, 2018, 96 (10): 4306- 4312. |
| 33 | 穆琳, 王文洲, 赵博昊, 等. 福建黄兔肌纤维性状及Myh6基因表达水平分析[J]. 浙江大学学报: 农业与生命科学版, 2017, 43 (3): 365- 370. |
| MU L , WANG W Z , ZHAO B H , et al. Analysis of muscle fiber traits and Myh6 gene expression level in Fujian yellow rabbit[J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2017, 43 (3): 365- 370. | |
| 34 | 胡帅帅, 王文洲, 闫晓荣, 等. 新西兰白兔中Myh6基因的表达及与肌纤维性状的相关性[J]. 华南农业大学学报, 2017, 38 (2): 12- 17. |
| HU S S , WANG W Z , YAN X R , et al. Myh6 gene expression and its correlation with muscle fiber traits of New Zealand white rabbits[J]. Journal of South China Agricultural University, 2017, 38 (2): 12- 17. | |
| 35 | 李海峰, 李冰冰, 石硕硕, 等. γ-氨基丁酸在食品中的应用研究进展[J]. 河南工业大学学报: 自然科学版, 2023, 44 (1): 117- 125. |
| LI H F , LI B B , SHI S S , et al. Research progress on the application of γ-aminobutyric acid in food[J]. Journal of Henan University of Technology: Natural Science Edition, 2023, 44 (1): 117- 125. | |
| 36 | SAKASHITA M , NAKAMURA U , HORIE N , et al. Oral supplementation using gamma-aminobutyric acid and whey protein improves whole body fat-free mass in men after resistance training[J]. J Clin Med Res, 2019, 11 (6): 428- 434. |
| 37 | ATHAPATHTHU A M G K , MOLAGODA I M N , JAYASOORIYA R G P T , et al. Gamma-aminobutyric acid (GABA) promotes growth in zebrafish larvae by Inducing IGF-1 expression via GABAA and GABAB receptors[J]. Int J Mol Sci, 2021, 22 (20): 11254. |
| 38 | LIANG R , SHEN X P , WANG F , et al. H19X-encoded miR-322(424)/miR-503 regulates muscle mass by targeting translation initiation factors[J]. J Cachexia Sarcopenia Muscle, 2021, 12 (6): 2174- 2186. |
| 39 | 王语涵. γ-氨基丁酸对肌肉生长发育的调控作用和机制研究[D]. 重庆: 西南大学, 2023. |
| WANG Y H. Regulation and mechanism of gamma-aminobutyric acid on muscle growth and development[D]. Chongqing: Southwest University, 2023. (in Chinese) | |
| 40 | MALEKZADEH P , KHARA J , HEYDARI R . Alleviating effects of exogenous Gamma-aminobutiric acid on tomato seedling under chilling stress[J]. Physiol Mol Biol Plants, 2014, 20 (1): 133- 137. |
| 41 | YANG R Q , FENG L , WANG S F , et al. Accumulation of γ-aminobutyric acid in soybean by hypoxia germination and freeze-thawing incubation[J]. J Sci Food Agric, 2016, 96 (6): 2090- 2096. |
| 42 | ZHU X J , LIAO J R , XIA X L , et al. Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature[J]. BMC Plant Biol, 2019, 19 (1): 43. |
| 43 | TOUBIANA D , SADE N , LIU L F , et al. Correlation-based network analysis combined with machine learning techniques highlight the role of the GABA shunt in Brachypodium sylvaticum freezing tolerance[J]. Sci Rep, 2020, 10 (1): 4489. |
| 44 | ZHANG Z R , DU H R , YANG C W , et al. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds[J]. Anim Biotechnol, 2019, 30 (3): 233- 241. |
| 45 | ROSSI A C , MAMMUCARI C , ARGENTINI C , et al. Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles[J]. J Physiol, 2010, 588 (Pt 2): 353- 364. |
| 46 | LIU J X , ERIKSSON P O , THORNELL L E , et al. Fiber content and myosin heavy chain composition of muscle spindles in aged human biceps brachii[J]. J Histochem Cytochem, 2005, 53 (4): 445- 454. |
| 47 | NICHOLS T R , COPE T C . Cross-bridge mechanisms underlying the history-dependent properties of muscle spindles and stretch reflexes[J]. Can J Physiol Pharmacol, 2004, 82 (8-9): 569- 576. |
| 48 | 连文玺, 饶家声, 郝柳芳, 等. 肌梭形态研究进展[J]. 生理学报, 2022, 74 (6): 1039- 1047. |
| LIAN W X , RAO J S , HAO L F , et al. Research progress on muscle spindle morphology[J]. Acta Physiologica Sinica, 2022, 74 (6): 1039- 1047. | |
| 49 | REINER A , LEVITZ J . Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert[J]. Neuron, 2018, 98 (6): 1080- 1098. |
| 50 | 洪剑, 连苡涵, 王海利. 肌梭中机械力离子通道及其信号传递机制研究进展[J]. 军事医学, 2023, 47 (5): 395- 400. |
| HONG J , LIAN Y H , WANG H L . Advances in mechanosensitive ion channels and possible mechanisms of mechanical signal transmission[J]. Military Medical Sciences, 2023, 47 (5): 395- 400. | |
| 51 | MARKS C R , SHONESY B C , WANG X , et al. Activated CaMKⅡα binds to the mGlu5 metabotropic glutamate receptor and modulates calcium mobilization[J]. Mol Pharmacol, 2018, 94 (6): 1352- 1362. |
| 52 | NISWENDER C M , CONN P J . Metabotropic glutamate receptors: physiology, pharmacology, and disease[J]. Annu Rev Pharmacol Toxicol, 2010, 50, 295- 322. |
| 53 | 李爽, 付玉莹, 佟慧丽, 等. GRP94通过PI3K/AKT/mTOR信号通路促进牛肌肉卫星细胞分化[J]. 中国兽医学报, 2023, 43 (10): 2101- 2108. |
| LI S , FU Y Y , TONG H L , et al. GRP94 promotes differentiation of bovine skeletal muscle satellite cells through PI3K/AKT/mTOR signaling pathway[J]. Chinese Journal of Veterinary Science, 2023, 43 (10): 2101- 2108. | |
| 54 | SPRENGEL R . Role of AMPA receptors in synaptic plasticity[J]. Cell Tissue Res, 2006, 326 (2): 447- 455. |
| 55 | 李世超, 阮怀珍. Kainate受体参与痛觉调控机制研究进展[J]. 神经解剖学杂志, 2012, 28 (1): 85- 88. |
| LI S C , RUAN H Z . Research progress on the mechanism of Kainate receptor involved in pain regulation[J]. Chinese Journal of Neuroanatomy, 2012, 28 (1): 85- 88. | |
| 56 | GONG J K , LIU J Z , RONAN E A , et al. A cold-sensing receptor encoded by a glutamate receptor gene[J]. Cell, 2019, 178 (6): 1375- 1386. |
| 57 | 张晓雯, 张艳杰, 李玮, 等. 南极独角雪冰鱼与尼罗罗非鱼Grik1基因的克隆及其在低温胁迫下的作用比较[J]. 大连海洋大学学报, 2023, 38 (1): 68- 75. |
| ZHANG X W , ZHANG Y J , LI W , et al. Cloning and function exploration comparison of Grik1 in Antarctic crocodile icefish (Chionodmco hamatus) and Nile tilapia (Oreochromis niloticus) exposed to cold stress[J]. Journal of Dalian Ocean University, 2023, 38 (1): 68- 75. | |
| 58 | RUEL J , EMERY S , NOUVIAN R , et al. Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice[J]. Am J Hum Genet, 2008, 83 (2): 278- 292. |
| 59 | 王春晖. 快速伸缩复合训练对青年男子篮球运动员下肢爆发力的影响研究[J]. 辽宁体育科技, 2022, 44 (1): 135- 140. |
| WANG C H . Study on the effect of rapid stretching compound training on lower limb explosive force of youth male basketball players[J]. Liaoning Sport Science and Technology, 2022, 44 (1): 135- 140. | |
| 60 | 黄硕, 赵小峰. 全身振动训练对老年肌少症患者下肢肌力和活动能力的影响[J]. 中国康复, 2024, 39 (3): 160- 162. |
| HUANG S , ZHAO X F . Effect of whole body vibration training on lower limb muscle strength and mobility in elderly patients with sarcopenia[J]. Chinese Journal of Rehabilitation, 2024, 39 (3): 160- 162. | |
| 61 | 刘晓冬. 振动训练对男子跳远运动员下肢爆发力即时影响的研究[D]. 北京: 北京体育大学, 2020. |
| LIU X D. A study of the acute effect of vibration training on the explosive power of the lower limbs of male long jumpers[D]. Beijing: Beijing Sport University, 2020. (in Chinese) | |
| 62 | 陈剑飞. 上肢末端释放训练对散打运动员直拳爆发力干预效果的研究[D]. 上海: 上海体育学院, 2023. |
| CHEN J F. Study on the effect of upper limb end ballistic training on the explosive power of Sanda athletes[D]. Shanghai: Shanghai University of Sport, 2023. (in Chinese) |
| [1] | SU Meng, LIU Sha, SONG Danli, GAO Qianmei, ZHENG Maiqing, WEN Jie, ZHAO Guiping, LI Qinghe. Identification of Candidate Genes Associated with Ascites Syndrome in Broilers Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 559-570. |
| [2] | WU Shuang, YIN Na, YU Mohan, PING Yuyu, BAI Hao, CHEN Shihao, CHANG Guobin. The Effect of TRIM39.2 Overexpression on the Transcriptional Expression of Chicken Macrophages [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 178-188. |
| [3] | LU Xiu, ZHANG Ming'ai, KONG Min, ZHANG Jing, WANG Binghan, HOU Zhongyi, TENG Xingyi, JIANG Yajing, FAN Wenlei, WANG Baowei. Screening for Candidate Genes Related to Egg Production in Wulong Geese Based on Transcriptome and Proteome Analyses [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 232-245. |
| [4] | Xiaoxu ZHANG, Hao LI, Pingjie FENG, Hao YANG, Xinyue LI, Ran LÜ, Zhangyuan PAN, Mingxing CHU. Application of Single-Cell Transcriptome Sequencing Technology in Domesticated Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3276-3287. |
| [5] | Jing CHEN, Xuebei WU, Dongzhi MIAO, Chi ZHANG, Zhenyu GUO, Ying WANG. Comparative Analysis of Transcriptome of Pigeon Follicles at Early Stage of Laying Interval Reveals Genes Related to Follicular Development [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3503-3515. |
| [6] | Wanqing LI, Yaqi ZENG, Xinkui YAO, Jianwen WANG, Xinxin YUAN, Chen MENG, Yuanfang SUN, Xuan PENG, Jun MENG. Comparative Analysis of Blood Transcriptome in Yili Horses Bred for Meat Performance [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2951-2962. |
| [7] | Mingliang HE, Xiaoyang LÜ, Yongqing JIANG, Zhenghai SONG, Yeqing WANG, Huiguo YANG, Shanhe WANG, Wei SUN. Function Analysis of SOX18 in Hu Sheep Hair Follicle Dermal Papilla Cells Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2409-2420. |
| [8] | CHEN Zhe, QU Xiaolu, GUO Binbin, SUN Xuefeng, YAN Leyan. Study on Candidate Genes for Green Light Affecting Early Development of Goose Embryo Heart Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1978-1988. |
| [9] | XU Junjie, ZHANG Lutong, WANG Jinjie, CHEN Xiaochen, HE Weixian, CAI Chuanjiang, CHU Guiyan, YANG Gongshe. Exploring the Effect of Epimedium on Estrus of Gilts Based on Multiomics and Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1615-1628. |
| [10] | WANG Xin, NIE Tong, LI Aqun, MA Jun. Hesperidin Alleviates High-fat-diet Induced Hepatic Oxidative Stress in Mice via Oxidative Phosphorylation Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1302-1313. |
| [11] | GAO Yawei, PENG Di, SUN Zhaoyang, YAN Ziyue, CUI Kai, MA Zefang. Mining the Molecular Mechanism of Exogenous Melatonin Affecting the Development of Mink Ovary Based on Transcriptome Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 607-618. |
| [12] | MIN Xiangyu, WEI Jiali, XU Biao, LIU Huitao, ZHENG Junjun, WANG Guiwu. Full-length Transcriptome Sequencing of Sika Deer Antler and Mining of Antler Yield-related Genes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5549-5566. |
| [13] | Congying YU, Jinhua WU, Bingzhou ZHONG, Haiquan ZHAO, Shuwen TAN, Hui YU, Hua LI. Analysis of Whole Transcriptome Characteristics of the Hermaphroditic Pig's Pituitary Gland [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4925-4937. |
| [14] | Ting JIANG, Wendong LI, Xingqi LI, Yu HUANG, Qigui WANG, Haiwei WANG, Chaowu YANG, Lingbin LIU. Screening Candidate Genes for Ovarian Development and Constructing Regulatory Network in Nesting Chickens by Transcriptome and Proteome [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4950-4967. |
| [15] | Hongtai ZHOU, Junrong YAN, Pengfei LI. Transcriptome Sequencing was Used to Screen Genes Related to Follicular Development Bias and Dominant Follicle Selection in Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5059-5071. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||