[1] |
World Health Organization. Global tuberculosis report 2021[R]. Geneva:World Health Organization, 2021.
|
[2] |
徐彩红, 周向梅, 范伟兴, 等. 人畜禽共患结核病防控现状及展望[J]. 中国防痨杂志, 2021, 43(10):993-997.XU C H, ZHOU X M, FAN W X, et al. Current situation and prospect of prevention and control of tuberculosis in humans, livestock and poultry[J]. Chinese Journal of Antituberculosis, 2021, 43(10):993-997. (in Chinese)
|
[3] |
QUEVAL C J, BROSCH R, SIMEONE R. The macrophage:a disputed fortress in the battle against Mycobacterium tuberculosis[J]. Front Microbiol, 2017, 8:2284.
|
[4] |
ABREU R, GIRI P, QUINN F. Host-pathogen interaction as a novel target for host-directed therapies in tuberculosis[J]. Front Immunol, 2020, 11:1553.
|
[5] |
RODEL H E, FERREIRA I A T M, ZIEGLER C G K, et al. Aggregated Mycobacterium tuberculosis enhances the inflammatory response[J]. Front Microbiol, 2021, 12:757134.
|
[6] |
MAHAMED D, BOULLE M, GANGA Y, et al. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells[J]. eLife, 2017, 6:e22028.
|
[7] |
KUNDU M, BASU J. The role of micrornas and long non-coding RNAs in the regulation of the immune response to Mycobacterium tuberculosis infection[J]. Front Immunol, 2021, 12:687962.
|
[8] |
SUN Q, SHEN X N, MA J, et al. LncRNA NEAT1 participates in inflammatory response in macrophages infected by Mycobacterium tuberculosis through targeted regulation of miR-377-3p[J]. Microb Pathog, 2021, 150:104674.
|
[9] |
WEI L, LIU K, JIA Q Z, et al. The roles of host noncoding RNAs in Mycobacterium tuberculosis infection[J]. Front Immunol, 2021, 12:664787.
|
[10] |
WU X L, MA C J, MA Q M, et al. Microarray profiling and co-expression network analysis of LncRNAs and mRNAs in acute respiratory distress syndrome mouse model[J]. Pathogens, 2022, 11(5):532.
|
[11] |
VERONESE A, LUPINI L, CONSIGLIO J, et al. Oncogenic role of miR-483-3p at the IGF2/483 locus[J]. Cancer Res, 2010, 70(8):3140-3149.
|
[12] |
WANG Y J, HOU L X, YUAN X W, et al. miR-483-3p promotes cell proliferation and suppresses apoptosis in rheumatoid arthritis fibroblast-like synoviocytes by targeting IGF-1[J]. Biomed Pharmacother, 2020, 130:110519.
|
[13] |
ZHANG K L, FU W Y, ZHAO S, et al. miR-483-3p Promotes IL-33 production from fibroblast-like synoviocytes by regulating ERK signaling in rheumatoid arthritis[J]. Inflammation, 2021, 44(6):2302-2308.
|
[14] |
LI L, TONG A, ZHANG Q S, et al. The molecular mechanisms of MLKL-dependent and MLKL-independent necrosis[J]. J Mol Cell Biol, 2021, 13(1):3-14.
|
[15] |
KARLOWITZ R, VAN WIJK S J L. Surviving death:emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis[J]. FEBS J, 2021, doi:10. 1111/febs. 16255.
|
[16] |
ZHANG L, JIANG X J, PFAU D, et al. Type I interferon signaling mediates Mycobacterium tuberculosis-induced macrophage death[J]. J Exp Med, 2021, 218(2):e20200887.
|
[17] |
BEHAR S M, DIVANGAHI M, REMOLD H G. Evasion of innate immunity by Mycobacterium tuberculosis:is death an exit strategy?[J]. Nat Rev Microbiol, 2010, 8(9):668-674.
|
[18] |
SUN Q, SHEN X N, WANG P, et al. Targeting cyclophilin-D by miR-1281 protects human macrophages from Mycobacterium tuberculosis-induced programmed necrosis and apoptosis[J]. Aging, 2019, 11(24):12661-12673.
|
[19] |
FENG J F, BIAN Q, HE X W, et al. A LncRNA-miRNA-mRNA ceRNA regulatory network based tuberculosis prediction model[J]. Microb Pathog, 2021, 158:105069.
|
[20] |
CHEN J X, CHEN X B, FU L B, et al. LncRNA GACAT1 targeting miRNA-149 regulates the molecular mechanism of proliferation, apoptosis and autophagy of oral squamous cell carcinoma cells[J]. Aging, 2021, 13(16):20359-20371.
|
[21] |
ZHANG L, LIU T, CHEN H Y, et al. Predicting lncRNA-miRNA interactions based on interactome network and graphlet interaction[J]. Genomics, 2021, 113(3):874-880.
|
[22] |
WANG K, LIU F, LIU C Y, et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873[J]. Cell Death Differ, 2016, 23(8):1394-1405.
|
[23] |
FU B B, LIN X Y, TAN S, et al. MiR-342 controls Mycobacterium tuberculosis susceptibility by modulating inflammation and cell death[J]. EMBO Rep, 2021, 22(9):e52252.
|
[24] |
ZHOU W, YANG W L, YANG J, et al. miR-483 promotes the development of colorectal cancer by inhibiting the expression level of EI24[J]. Mol Med Rep, 2021, 24(2):567.
|
[25] |
NAGAO M, FUKUDA I, ASAI A, et al. Diagnostic potential of miR-483 family for IGF-II producing non-islet cell tumor hypoglycemia[J]. Eur J Endocrinol, 2021, 184(1):41-49.
|
[26] |
ZHOU J, LIN J M, ZHAO Y P, et al. Deregulated expression of miR-483-3p serves as a diagnostic biomarker in severe pneumonia children with respiratory failure and its predictive value for the clinical outcome of patients[J]. Mol Biotechnol, 2022, 64(3):311-319.
|
[27] |
AFRIYIE-ASANTE A, DABLA A, DAGENAIS A, et al. Mycobacterium tuberculosis exploits focal adhesion kinase to induce necrotic cell death and inhibit reactive oxygen species production[J]. Front Immunol, 2021, 12:742370.
|
[28] |
ZHAO X, KHAN N, GAN H, et al. Bcl-xL mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages[J]. Mucosal Immunol, 2017, 10(6):1553-1568.
|
[29] |
徐雅楠, 于嘉霖, 马臣杰, 等. Lnc RNA-GAS5对BCG感染小鼠巨噬细胞后细胞坏死的调控作用[J]. 微生物学通报, 2019, 46(4):858-868.XU Y N, YU J L, MA C J, et al. Regulation of LncRNA-GAS5 on necrosis of macrophage induced by Bacillus Calmette-Guérin[J]. Microbiology China, 2019, 46(4):858-868. (in Chinese)
|