Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (10): 4196-4208.doi: 10.11843/j.issn.0366-6964.2023.10.018
• ANIMAL GENETICS AND BREEDING • Previous Articles Next Articles
ZHANG Shuo, ZHOU Yuxiao, WU Haibo*, SUO Lun*
Received:
2023-03-24
Online:
2023-10-23
Published:
2023-10-26
CLC Number:
ZHANG Shuo, ZHOU Yuxiao, WU Haibo, SUO Lun. Dynamics of Gene Editing Consequence Mediated by Long-term CRISPR/Cas9 System[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4196-4208.
[1] | PETERSEN B.Basics of genome editing technology and its application in livestock species[J].Reprod Domest Anim, 2017, 52(Suppl 3):4-13. |
[2] | CONG L, RAN F A, COX D, et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science, 2013, 339(6121):819-823. |
[3] | MALI P, YANG L H, ESVELT K M, et al.RNA-guided human genome engineering via Cas9[J].Science, 2013, 339(6121):823-826. |
[4] | WANG H Y, YANG H, SHIVALILA C S, et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J].Cell, 2013, 153(4):910-918. |
[5] | 戴学宇, 张乾义, 徐 璐, 等.CRISPR/Cas9基因编辑技术在重要猪病毒病防控中的研究与应用[J].畜牧兽医学报, 2020, 51(5):943-951.DAI X Y, ZHANG Q Y, XU L, et al.Research progress and application of CRISPR/Cas9 gene editing technology in prevention and control of important swine virus diseases[J].Acta Veterinaria et Zootechnica Sinica, 2020, 51(5):943-951.(in Chinese) |
[6] | GU H, ZHOU Y, YANG J Z, et al.Targeted overexpression of PPARγ in skeletal muscle by random insertion and CRISPR/Cas9 transgenic pig cloning enhances oxidative fiber formation and intramuscular fat deposition[J].FASEB J, 2021, 35(2):e21308. |
[7] | HAI T, TENG F, GUO R F, et al.One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J].Cell Res, 2014, 24(3):372-375. |
[8] | 广 璐, 张 英, 郭 晶, 等.CRISPR/Cas9介导hFAD3基因在牛NCAPG-LCORL位点的定点整合[J].农业生物技术学报, 2019, 27(1):12-22.GUANG L, ZHANG Y, GUO J, et al.Site-specific integration of hFAD3 gene in bovine (Bos taurus) NCAPG-LCORL locus mediated by CRISPR/Cas9[J].Journal of Agricultural Biotechnology, 2019, 27(1):12-22.(in Chinese) |
[9] | GIM G M, KWON D H, EOM K H, et al.Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9[J].Biotechnol J, 2022, 17(7):2100198. |
[10] | 左其生, 王颖洁, 赵瑞丰, 等.CRISPR/Cas技术可有效介导家鸡基因敲除[J].畜牧兽医学报, 2016, 47(6):1266-1271.ZUO Q S, WANG Y J, ZHAO R F, et al.CRISPR/Cas techniques can knockout the gene of chicken effectively[J].Acta Veterinaria et Zootechnica Sinica, 2016, 47(6):1266-1271.(in Chinese) |
[11] | 邹惠影, 李俊良, 朱化彬.引导编辑系统的研究与应用进展[J].畜牧兽医学报, 2022, 53(11):3721-3730.ZOU H Y, LI J L, ZHU H B.Progress on research and application of prime editing system[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(11):3721-3730.(in Chinese) |
[12] | FRIEDLAND A E, TZUR Y B, ESVELT K M, et al.Heritable genome editing in C. elegans via a CRISPR-Cas9 system[J]. Nat Methods, 2013, 10(8):741-743. |
[13] | BARRANGOU R, MARRAFFINI L A.CRISPR-Cas systems:prokaryotes upgrade to adaptive immunity[J].Mol Cell, 2014, 54(2):234-244. |
[14] | JINEK M, CHYLINSKI K, FONFARA I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science, 2012, 337(6096):816-821. |
[15] | MARUYAMA T, DOUGAN S K, TRUTTMANN M C, et al.Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining[J].Nat Biotechnol, 2015, 33(5):538-542. |
[16] | SANCAR A, LINDSEY-BOLTZ L A, VNSAL-KAÇMAZ K, et al.Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints[J].Annu Rev Biochem, 2004, 73:39-85. |
[17] | ZUO Q S, WANG Y J, CHENG S Z, et al.Site-directed genome knockout in chicken cell line and embryos can use CRISPR/Cas gene editing technology[J].G3 (Bethesda), 2016, 6(6):1787-1792. |
[18] | JABBAR A, ZULFIQAR F, MAHNOOR M, et al.Advances and perspectives in the application of CRISPR-Cas9 in livestock[J].Mol Biotechnol, 2021, 63(9):757-767. |
[19] | SHI X, TANG T, LIN Q Y, et al.Efficient generation of bone morphogenetic protein 15-edited Yorkshire pigs using CRISPR/Cas9[J].Biol Reprod, 2020, 103(5):1054-1068. |
[20] | WHITWORTH K M, ROWLAND R R R, EWEN C L, et al.Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J].Nat Biotechnol, 2016, 34(1):20-22. |
[21] | WHITWORTH K M, LEE K, BENNE J A, et al.Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J].Biol Reprod, 2014, 91(3):78. |
[22] | IKEDA M, MATSUYAMA S, AKAGI S, et al.Correction of a disease mutation using CRISPR/Cas9-assisted genome editing in Japanese black cattle[J].Sci Rep, 2017, 7(1):17827. |
[23] | WANG K K, OUYANG H S, XIE Z C, et al.Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J].Sci Rep, 2015, 5:16623. |
[24] | WANG K K, TANG X C, XIE Z C, et al.CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs[J].Transgenic Res, 2017, 26(6):799-805. |
[25] | OISHI I, YOSHII K, MIYAHARA D, et al.Targeted mutagenesis in chicken using CRISPR/Cas9 system[J].Sci Rep, 2016, 6:23980. |
[26] | MCFARLANE G R, SALVESEN H A, STERNBERG A, et al.On-farm livestock genome editing using cutting edge reproductive technologies[J].Front Sustain Food Syst, 2019, 3:106. |
[27] | BHAT S A, MALIK A A, AHMAD S M, et al.Advances in genome editing for improved animal breeding:a review[J].Vet World, 2017, 10(11):1361-1366. |
[28] | TSAI S Q, ZHENG Z L, NGUYEN N T, et al.GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases[J].Nat Biotechnol, 2015, 33(2):187-197. |
[29] | TAHA E A, LEE J, HOTTA A.Delivery of CRISPR-Cas tools for in vivo genome editing therapy:trends and challenges[J].J Control Release, 2022, 342:345-361. |
[30] | MOREIRA A S, CAVACO D G, FARIA T Q, et al.Advances in lentivirus purification[J].Biotechnol J, 2021, 16(1):2000019. |
[31] | MAERTENS G N, ENGELMAN A N, CHEREPANOV P.Structure and function of retroviral integrase[J].Nat Rev Microbiol, 2022, 20(1):20-34. |
[32] | WHITELAW C B A, LILLICO S G, KING T.Production of transgenic farm animals by viral vector-mediated gene transfer[J].Reprod Domest Anim, 2008, 43 Suppl 2:355-358. |
[33] | PLATT R J, CHEN S D, ZHOU Y, et al.CRISPR-Cas9 knockin mice for genome editing and cancer modeling[J].Cell, 2014, 159(2):440-455. |
[34] | ZHANG J F, KHAZALWA E M, ABKALLO H M, et al.The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research[J].J Genet Genomics, 2021, 48(5):347-360. |
[35] | BRINKER S K, PANDEY A, AYERS C R, et al.Association of cardiorespiratory fitness with left ventricular remodeling and diastolic function:the cooper center longitudinal study[J].JACC Heart Failure, 2014, 2(3):238-246. |
[36] | WU X, BURGESS S M.Integration target site selection for retroviruses and transposable elements[J].Cell Mol Life Sci CMLS, 2004, 61(19-20):2588-2596. |
[37] | BELARDINELLI R, GEORGIOU D, CIANCI G, et al.10-year exercise training in chronic heart failure:a randomized controlled trial[J].J Am Coll Cardiol, 2012, 60(16):1521-1528. |
[38] | LUSIC M, SILICIANO R F.Nuclear landscape of HIV-1 infection and integration[J].Nat Rev Microbiol, 2017, 15(2):69-82. |
[39] | BUSHMAN F D.Integration site selection by lentiviruses:biology and possible control[M]//TRONO D.Lentiviral Vectors.Berlin, Heidelberg:Springer, 2002:165-177. |
[40] | MOREB E A, HUTMACHER M, LYNCH M D.CRISPR-Cas "non-target" sites inhibit on-target cutting rates[J].CRISPR J, 2020, 3(6):550-561. |
[41] | LEE C M, DAVIS T H, BAO G.Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity[J].Exp Physiol, 2018, 103(4):456-460. |
[42] | SHEN M W, ARBAB M, HSU J Y, et al.Predictable and precise template-free CRISPR editing of pathogenic variants[J]. Nature, 2018, 563(7733):646-651. |
[1] | DUAN Yixin, ZHANG Linyun, ZHAO Yongju. The Evaluated Methods and Influencing Factors of SNP Heritability and Its Application in Farmer Animal Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1854-1865. |
[2] | QIU Meiyu, ZHANG Xuemei, ZHANG Ning, LIU Mingjun. Approach and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1345-1355. |
[3] | WANG Jiali, YANG Fan, SHAO Wenhua, HUANG Mengyao, CAO Weijun, PU Xiuying, ZHANG Wei, ZHENG Haixue. Construction of Tollip Knockout Pig Kidney Cell Line [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1810-1818. |
[4] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
[5] | FEI Xiaoyu, SHI Chaoqun, LIU Xueming, SU Feng, JIANG Yunliang. CRISPR/Cas9 System Mediated Gene Modificated MRC1 in PK15 Cells Reduce PCV2 Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 934-946. |
[6] | LIU Ling, WANG Dandan, CUI Kai, MA Yuehui, JIANG Lin. Advances of Disease-Resistant Breeding on Porcine Reproductive and Respiratory Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 434-442. |
[7] | CHEN Junzhen, QUAN Ran, FU Qiang, GE Lijuan, YUAN Yuanyuan, ZHANG Chengyuan, LI Jianlin, SHI Huijun. Study on the Effect of Heat Shock Protein HSP90B1 on the Replication of Bovine Viral Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 683-693. |
[8] | DENG Min'er, LI Na, GUO Yaqiong, FENG Yaoyu, XIAO Lihua. Application of CRISPR/Cas9 System on Gene Editing of Parasitic Protozoa [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 69-79. |
[9] | ZHAO Weimin, WANG Huili, CAO Shaoxian, GUO Rihong, WANG Zeping, CHEN Zhe, XU Kui, FU Yanfeng, LI Bixia, REN Shouwen, CHENG Jinhua. The Study of Base Editing of Porcine CD163 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1041-1050. |
[10] | LI Zhaolong, ZHANG Huifang, FENG Zhihua, FANG Zhou. Therapeutic Effect of Recombinant Adeno-Associated Virus Carrying CRISPR/Cas9 on Pseudorabies Virus-infected Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 834-846. |
[11] | YANG Yuting, ZHANG Xing, NIU Anran, YAN Zhichun, GONG Huazhong, DING Ruonan, MA Li. Rebuilding Multi-species Population Genealogies Based on High-density SNP Markers in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4183-4196. |
[12] | ZOU Huiying, LI Junliang, ZHU Huabin. Progress on Research and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3721-3730. |
[13] | LUO Jun, LIU Jinling, ZHENG Luping, LUO Qin, TENG Man. Recent Advances in Engineering Avian Herpesviruses by CRISPR/Cas9-based Gene Editing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3335-3344. |
[14] | WANG Pei, WANG Meng, LI Tingting, ZHENG Xiaonan, LIANG Qinli, CHEN Xiaoqing. Generation and Basic Functional Characterization of Four Hypothetical Protein Genes Deletion Strains of Toxoplasma gondii [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3598-3608. |
[15] | LI Chen, HE Wenfeng, ZHAO Lina, FAN Qi, YANG Guoqing, LIU Huimin. Effect of Interferon Stimulated Gene 15 Knockout in PK-15 Cell Line on Replication of Pseudorabies Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3621-3630. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||