Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (6): 2215-2222.doi: 10.11843/j.issn.0366-6964.2023.06.001
• REVIEW • Previous Articles Next Articles
AN Zongqi, ZHAN Siyuan, LI Li, ZHANG Hongping*
Received:
2022-10-08
Online:
2023-06-23
Published:
2023-06-16
CLC Number:
AN Zongqi, ZHAN Siyuan, LI Li, ZHANG Hongping. ceRNA-mediated Function of CircRNA on Critical Economic Traits in Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2215-2222.
[1] | CESANA M,CACCHIARELLI D,LEGNINI I,et al.A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J].Cell,2011,147(2):358-369. |
[2] | SALMENA L,POLISENO L,TAY Y,et al.A ceRNA hypothesis:The Rosetta stone of a hidden RNA language?[J].Cell,2011,146(3):353-358. |
[3] | KARRETH F A,TAY Y,PERNA D,et al.In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma[J].Cell,2011,147(2):382-395. |
[4] | CHIU H S,MARTÍNEZ M R,BANSAL M,et al.High-throughput validation of ceRNA regulatory networks[J].BMC Genomics,2017,18(1):418. |
[5] | TAY Y,RINN J,PANDOLFI P P.The multilayered complexity of ceRNA crosstalk and competition[J].Nature,2014,505(7483):344-352. |
[6] | LI J J,LIU Y,XIN X F,et al.Evidence for positive selection on a number of microRNA regulatory interactions during recent human evolution[J].PLoS Genet,2012,8(3):e1002578. |
[7] | THOMAS M,LIEBERMAN J,LAL A.Desperately seeking microRNA targets[J].Nat Struct Mol Biol,2010,17(10):1169-1174. |
[8] | SEITZ H.Redefining microRNA targets[J].Curr Biol,2009,19(10):870-873. |
[9] | MEMCZAK S,JENS M,ELEFSINIOTI A,et al.Circular RNAs are a large class of animal RNAs with regulatory potency[J].Nature,2013,495(7441):333-338. |
[10] | ALA U,KARRETH F A,BOSIA C,et al.Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments[J].Proc Natl Acad Sci U S A,2013,110(18):7154-7159. |
[11] | KIMURA T,JIANG S W,YOSHIDA N,et al.Interferon-alpha competing endogenous RNA network antagonizes microRNA-1270[J].Cell Mol Life Sci,2015,72(14):2749-2761. |
[12] | STAMOULAKATOU E,PINOLI P,CERI S,et al.Impact of mutational signatures on microRNA and their response elements[C]//Proceedings of the Pacific Symposium on Biocomputing 2020.Fairmont Orchid:World Scientific Publishing,2020:250-261. |
[13] | GARCIA D M,BAEK D,SHIN C,et al.Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs[J].Nat Struct Mol Biol,2011,18(10):1139-1146. |
[14] | FIGLIUZZI M,MARINARI E,DE MARTINO A.MicroRNAs as a selective channel of communication between competing RNAs:a steady-state theory[J].Biophys J,2013,104(5):1203-1213. |
[15] | LI Y,ZHENG Q P,BAO C Y,et al.Circular RNA is enriched and stable in exosomes:A promising biomarker for cancer diagnosis[J].Cell Res,2015,25(8):981-984. |
[16] | EBERT M S,SHARP P A.Emerging roles for natural microRNA sponges[J].Curr Biol,2010,20(19):R858-R861. |
[17] | DENZLER R,AGARWAL V,STEFANO J,et al.Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance[J].Mol cell,2014,54(5):766-776. |
[18] | BOSSON A D,ZAMUDIO J R,SHARP P A.Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition[J].Mol Cell,2014,56(3):347-359. |
[19] | QI X L,ZHANG D H,WU N,et al.CeRNA in cancer:Possible functions and clinical implications[J].J Med Genet,2015,52(10):710-718. |
[20] | TAN C,LIU S,TAN S K,et al.Polymorphisms in microRNA target sites of forkhead box O genes are associated with hepatocellular carcinoma[J].PLoS One,2015,10(3):e0119210. |
[21] | GRIMSON A,FARH K K H,JOHNSTON W K,et al.MicroRNA targeting specificity in mammals:Determinants beyond seed pairing[J].Mol Cell,2007,27(1):91-105. |
[22] | EBERT M S,SHARP P A.MicroRNA sponges:progress and possibilities[J].RNA,2010,16(11):2043-2050. |
[23] | RYBAK-WOLF A,STOTTMEISTER C,GLAŽAR P,et al.Circular RNAs in the mammalian brain are highly abundant,conserved,and dynamically expressed[J].Mol Cell,2015,58(5):870-885. |
[24] | HANSEN T B,JENSEN T I,CLAUSEN B H,et al.Natural RNA circles function as efficient microRNA sponges[J].Nature,2013,495(7441):384-388. |
[25] | ZHANG P P,CHAO Z,ZHANG R,et al.Circular RNA regulation of myogenesis[J].Cells,2019,8(8):885. |
[26] | ZHOU Z Y,LI K Y,LIU J N,et al.Expression profile analysis to identify circular RNA expression signatures in muscle development of Wu'an goat Longissimus dorsi tissues[J].Front Vet Sci,2022,9:833946. |
[27] | LIU R L,LIU X X,BAI X J,et al.Identification and characterization of circRNA in Longissimus dorsi of different breeds of cattle[J].Front Genet,2020,11:565085. |
[28] | LI M,ZHANG N,ZHANG W F,et al.Comprehensive analysis of differentially expressed circRNAs and ceRNA regulatory network in porcine skeletal muscle[J].BMC Genomics,2021,22(1):320. |
[29] | QI A,RU W X,YANG H Y,et al.Circular RNA ACTA1 acts as a sponge for miR-199a-5p and miR-433 to regulate bovine myoblast development through the MAP3K11/MAP2k7/JNK pathway[J].J Agric Food Chem,2022,70(10):3357-3373. |
[30] | ZHANG R M,PAN Y,ZOU C X,et al.CircUBE2Q2 promotes differentiation of cattle muscle stem cells and is a potential regulatory molecule of skeletal muscle development[J].BMC Genomics,2022,23(1):267. |
[31] | LI H,YANG J M,WEI X F,et al.CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a[J].J Cell Physiol,2018,233(6):4643-4651. |
[32] | RU W X,QI A,SHEN X M,et al.The circular RNA circCPE regulates myoblast development by sponging miR-138[J].J Anim Sci Biotechnol,2021,12(1):102. |
[33] | WANG X G,CAO X K,DONG D,et al.Circular RNA TTN acts as a miR-432 sponge to facilitate proliferation and differentiation of myoblasts via the IGF2/PI3K/AKT signaling pathway[J].Mol Ther Nucleic Acids,2019,18:966-980. |
[34] | YUE B L,WANG J,RU W X,et al.The circular RNA circHUWE1 sponges the miR-29b-AKT3 axis to regulate myoblast development[J].Mol Ther Nucleic Acids,2020,19:1086-1097. |
[35] | SHEN X M,TANG J,RU W X,et al.CircINSR regulates fetal bovine muscle and fat development[J].Front Cell Dev Biol,2021,8:615638. |
[36] | SHEN X M,ZHANG X Y,RU W X,et al.circINSR promotes proliferation and reduces apoptosis of embryonic myoblasts by sponging miR-34a[J].Mol Ther Nucleic Acids,2020,19:986-999. |
[37] | OUYANG H J,CHEN X L,LI W M,et al.Circular RNA circSVIL promotes myoblast proliferation and differentiation by sponging miR-203 in chicken[J].Front Genet,2018,9:172. |
[38] | CHEN B,YU J,GUO L J,et al.Circular RNA circHIPK3 promotes the proliferation and differentiation of chicken myoblast cells by sponging miR-30a-3p[J].Cells,2019,8(2):177. |
[39] | ZHAO J,ZHAO X Y,SHEN X X,et al.CircCCDC91 regulates chicken skeletal muscle development by sponging miR-15 family via activating IGF1-PI3K/AKT signaling pathway[J].Poult Sci,2022,101(5):101803. |
[40] | SHEN X M,TANG J,JIANG R,et al.CircRILPL1 promotes muscle proliferation and differentiation via binding miR-145 to activate IGF1R/PI3K/AKT pathway[J].Cell Death Dis,2021,12(2):142. |
[41] | CAI B L,MA M T,ZHOU Z,et al.CircPTPN4 regulates myogenesis via the miR-499-3p/NAMPT axis[J].J Anim Sci Biotechnol,2022,13(1):2. |
[42] | WANG Z J,ZHANG M,LI K,et al.CircMGA depresses myoblast proliferation and promotes myotube formation through miR-144-5p/FAP signal[J].Animals (Basel),2022,12(7):873. |
[43] | LI K,HUANG W C,WANG Z J,et al.CircTAF8 regulates myoblast development and associated carcass traits in chicken[J].Front Genet,2022,12:743757. |
[44] | KYEI B,ODAME E,LI L,et al.Knockdown of CDR1as decreases differentiation of goat skeletal muscle satellite cells via upregulating mir-27a-3p to inhibit ANGPT1[J].Genes (Basel),2022,13(4):663. |
[45] | ZHANG Z, FAN Y, DENG K, et al. Circular RNA circUSP13 sponges miR-29c to promote differentiation and inhibit apoptosis of goat myoblasts by targeting IGF1[J]. Faseb,2022,36(1):e22097. |
[46] | CAO H G,LIU J M,DU T N,et al.Circular RNA screening identifies circMYLK4 as a regulator of fast/slow myofibers in porcine skeletal muscles[J].Mol Genet Genomics,2022,297(1):87-99. |
[47] | JIN L,TANG Q Z,HU S L,et al.A pig bodymap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription[J].Nat Commun,2021,12(1):3715. |
[48] | HUANG J P,ZHAO J H,ZHENG Q Z,et al.Characterization of circular RNAs in Chinese buffalo (Bubalus bubalis) adipose tissue:A focus on circular RNAs involved in fat deposition[J].Animals (Basel),2019,9(7):403. |
[49] | WU J Y,ZHANG S L,YUE B L,et al.CircRNA profiling reveals circPPARγ modulates adipogenic differentiation via sponging miR-92a-3p[J].J Agric Food Chem,2022,70(22):6698-6708. |
[50] | LI B J,HE Y,WU W J,et al.Circular RNA profiling identifies novel circPPARA that promotes intramuscular fat deposition in pigs[J].J Agric Food Chem,2022,70(13):4123-4137. |
[51] | JIANG R,LI H,YANG J M,et al.CircRNA profiling reveals an abundant circFUT10 that promotes adipocyte proliferation and inhibits adipocyte differentiation via sponging let-7[J].Mol Ther Nucleic Acids,2020,20:491-501. |
[52] | ZHANG P P,HAN Q,SHENG M X,et al.Identification of circular RNA expression profiles in white adipocytes and their roles in Adipogenesis[J].Front Physiol,2021,12:728208. |
[53] | WANG L D,LIANG W S,WANG S S,et al.Circular RNA expression profiling reveals that circ-PLXNA1 functions in duck adipocyte differentiation[J].PLoS One,2020,15(7):e0236069. |
[54] | HAO Z Y,ZHOU H T,HICKFORD J G H,et al.Identification and characterization of circular RNA in lactating mammary glands from two breeds of sheep with different milk production profiles using RNA-seq[J].Genomics,2020,112(3):2186-2193. |
[55] | WANG J Q,ZHOU H T,HICKFORD J G H,et al.Identification and characterization of circular RNAs in mammary gland tissue from sheep at peak lactation and during the nonlactating period[J].J Dairy Sci,2021,104(2):2396-2409. |
[56] | WANG D Y,CHEN Z J,ZHUANG X N,et al.Identification of circRNA-associated-ceRNA networks involved in milk fat metabolism under heat stress[J].Int J Mol Sci,2020,21(11):4162. |
[57] | ZHANG M,MA L,LIU Y H,et al.CircRNA-006258 sponge-adsorbs miR-574-5p to regulate cell growth and milk synthesis via EVI5l in goat mammary epithelial cells[J].Genes (Basel),2020,11(7):718. |
[58] | WANG D Y,ZHAO Z J,SHI Y R,et al.CircEZH2 regulates milk fat metabolism through miR-378b sponge activity[J].Animals (Basel),2022,12(6):718. |
[59] | CLIFFORD R L,SINGER C A,JOHN A E.Epigenetics and miRNA emerge as key regulators of smooth muscle cell phenotype and function[J].Pulm Pharmacol Ther,2013,26(1):75-85. |
[60] | LIU Y F,ZHOU Z Y,HE X Y,et al.Differentially expressed circular RNA profile signatures identified in prolificacy trait of Yunshang black goat ovary at estrus cycle[J].Front Physiol,2022,13:820459. |
[61] | MA L,ZHANG M,CAO F J,et al.Effect of MiR-100-5p on proliferation and apoptosis of goat endometrial stromal cell in vitro and embryo implantation in vivo[J].J Cell Mol Med,2022,26(9):2543-2556. |
[62] | LIU X R,ZHANG L,YANG L C,et al.miR-34a/c induce caprine endometrial epithelial cell apoptosis by regulating circ-8073/CEP55 via the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways[J].J Cell Physiol,2020,235(12):10051-10067. |
[63] | LI X Y,GAO F L,FAN Y S,et al.A novel identified circ-ANKHD1 targets the miR-27a-3p/SFRP1 signaling pathway and modulates the apoptosis of granulosa cells[J].Environ Sci Pollut Res Int,2021,28(41):57459-57469. |
[64] | GUO T Y,ZHANG J B,YAO W,et al.CircINHA resists granulosa cell apoptosis by upregulating CTGF as a ceRNA of miR-10a-5p in pig ovarian follicles[J].Biochim Biophys Acta Gene Regul Mech,2019,1862(10):194420. |
[65] | WU Y,XIAO H W,PI J S,et al.The circular RNA aplacirc_13267 upregulates duck granulosa cell apoptosis by the apla-miR-1-13/THBS1 signaling pathway[J].J Cell Physiol,2020,235(7-8):5750-5763. |
[66] | WANG H M,ZHANG Y,ZHANG J B,et al.CircSLC41A1 resists porcine granulosa cell apoptosis and follicular atresia by promoting SRSF1 through miR-9820-5p sponging[J].Int J Mol Sci,2022,23(3):1509. |
[67] | CAO Z B,GAO D,XU T T,et al.Circular RNA profiling in the oocyte and cumulus cells reveals that circARMC4 is essential for porcine oocyte maturation[J].Aging,2019,11(18):8015-8034. |
[1] | WANG Yaxin, WANG Jing, TIAN Xuekai, YANG Gongshe, YU Taiyong. Application of Multi-omics Technology in the Study of Important Economic Traits of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1842-1853. |
[2] | YU Zuhua, GAO Mengru, QI Zhiying, ZHANG Jingyu, HE Lei, CHEN Jian, DING Ke. Research Progress on the Function of RNA Binding Protein ELAVL1 and Its Regulation of Viral Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1914-1925. |
[3] | LIU Weiye, HUANG Xuewei. Research Progress of Non-coding RNA in Infectious Bursal Disease Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1488-1498. |
[4] | CAO Yuzhu, XING Yuxin, MA Chenglin, GUAN Hongbo, JIA Qihui, KANG Xiangtao, TIAN Yadong, LI Zhuanjian, LIU Xiaojun, LI Hong. Biological Characterization of Chicken FGF6 Gene and Association of Its Polymorphisms with Economic Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1536-1550. |
[5] | RU Meng, ZENG Wenhui, PENG Jianling, ZENG Qingjie, YIN Chao, CUI Yong, WEI Qing, LIANG Haiping, XIE Xianhua, HUANG Jianzhen. Research Progress on Follicles Development of Hens and Its Epigenetic Regulatory Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3613-3622. |
[6] | WANG Zhengrong, MA Xun, ZHANG Yanyan, SUN Yan, MENG Jimeng, BO Xinwen. Differential Expression Profile of CircRNA in Protoscolex, Hydatid Cyst Wall and Adult of Echinococcus granulosus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3474-3489. |
[7] | QIN Xue, SHA Yiwen, YANG Menghao, CAI Rui, PANG Weijun. Advances in Regulation of Non-coding RNA on Mammalian Endometrial Receptivity and Decidualization [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1347-1358. |
[8] | LUO Ju, MAO Jiani, XIA Yinzhao, YANG Zhenguo. Regulation of circRNAs on Mammalian Intestinal Barrier Function [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4439-4448. |
[9] | JIANG Shengqiang, HU Jing, CHEN Hongying. Expression Analysis of CircRNAs in A549 Cells Infected with H1N1 Influenza A Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4724-4734. |
[10] | YANG Zhimei, LIANG Chengcheng, ZHANG Dianqi, LI Xuefeng, ZAN Linsen. Research Progress on the Regulation of circRNA by m6A Modification [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4016-4027. |
[11] | LI Tingting, LIU Qiuyue, LI Xiangchen, WANG Haitao. Research Progress and Applications of Genes Associated with Economic Traits in Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2417-2434. |
[12] | FENG Xue, ZHAO Jinhui, WANG Shuzhe, HUANG Jieping, WEI Xuefeng, SHI Yuangang, MA Yun. Overexpression of circNMT1 Promotes Adipogenic Differentiation of Buffalo Adipocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1077-1088. |
[13] | YIN Yanling, HUANG Shuang, YAO Qian, WU Jiangping, GUO Haochen, YANG Xin, SONG Junke, ZHAO Guanghui. The Mechanisms of Circular RNA ciRS-7 Affecting the Propagation of Cryptosporidium parvum in HCT-8 Cells via Targeting miR-219a-5p [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3989-3999. |
[14] | HUANG Xiaoyu, YANG Qiaoli, YAN Zunqiang, WANG Pengfei, SHI Hairen, GUN Shuangbao. Characterization of circRNA Expression Profiles Involved in Intestines of Clostridium Perfringens Type C-infected Diarrheal Piglet [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 4058-4070. |
[15] | XIE Liqing, YANG Yang, PENG Yuanyi, LI Nengzhang. Research Progress on the Function and Immunity of Capsular Polysaccharide [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 576-587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||