Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (10): 3326-3334.doi: 10.11843/j.issn.0366-6964.2022.10.006
• REVIEW • Previous Articles Next Articles
HOU Bo*,WANG Chenyan,ZHOU Lunjiang
Received:
2022-01-18
Online:
2022-10-23
Published:
2022-10-26
CLC Number:
HOU Bo,WANG Chenyan,ZHOU Lunjiang. The Roles and Regulatory Mechanisms of Toxin-antitoxin System in Bacterial Biofilm Formation[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3326-3334.
[1] | WEN Y R, BEHIELS E, DEVREESE B. Toxin-Antitoxin systems:their role in persistence, biofilm formation, and pathogenicity[J]. Pathog Dis, 2014, 70(3):240-249. |
[2] | PAGE R, PETI W. Toxin-antitoxin systems in bacterial growth arrest and persistence[J]. Nat Chem Biol, 2016, 12(4):208-214. |
[3] | OTTO M. Bacterial evasion of antimicrobial peptides by biofilm formation[J]. Curr Top Microbiol Immunol, 2006, 306:251-258. |
[4] | CIOFU O, MOSER C, JENSEN P Ø, et al. Tolerance and resistance of microbial biofilms[J]. Nat Rev Microbiol, 2022, doi:10. 1038/s41579-022-00682-4. |
[5] | ITO A, TANIUCHI A, MAY T, et al. Increased antibiotic resistance of Escherichia coli in mature biofilms[J]. Appl Environ Microbiol, 2009, 75(12):4093-4100. |
[6] | DONLAN R M. Role of biofilms in antimicrobial resistance[J]. ASAIO J, 2000, 46(6):S47-S52. |
[7] | CLUTTERBUCK A L, WOODS E J, KNOTTENBELT D C, et al. Biofilms and their relevance to veterinary medicine[J]. Vet Microbiol, 2007, 121(1-2):1-17. |
[8] | SREY S, JAHID I K, HA S D. Biofilm formation in food industries:A food safety concern[J]. Food Control, 2013, 31(2):572-585. |
[9] | HOLAH J T, BLOOMFIELD S F, WALKER A J, et al. Control of biofilms in the food industry[M]//WIMPENNY W, NICHOLS D, STICKER, et al. Bacterial Biofilms and Their Control in Medicine and Industry. Powys:Gregynog Hall, 1994. |
[10] | KUMAR C G, ANAND S K. Significance of microbial biofilms in food industry:a review[J]. Int J Food Microbiol, 1998, 42(1-2):9-27. |
[11] | TRACHOO N. Biofilms and the food industry[J]. Songklanakarin J Sci Technol, 2003, 25(6):807-815. |
[12] | OGURA T, HIRAGA S. Mini-F plasmid genes that couple host cell division to plasmid proliferation[J]. Proc Natl Acad Sci U S A, 1983, 80(15):4784-4788. |
[13] | SINGH G, YADAV M, GHOSH C, et al. Bacterial toxin-antitoxin modules:classification, functions, and association with persistence[J]. Curr Res Microb Sci, 2021, 2:100047, doi:10. 1016/j. crmicr. 2021. 100047. |
[14] | EROSHENKO D V, POLYUDOVA T V, PYANKOVA A A. VapBC and MazEF toxin/antitoxin systems in the regulation of biofilm formation and antibiotic tolerance in nontuberculous mycobacteria[J]. Int J Mycobacteriol, 2020, 9(2):156-166. |
[15] | BRANTL S, MVLLER P. Toxin-antitoxin systems in Bacillus subtilis[J]. Toxins (Basel), 2019, 11(5):262, doi:10. 3390/toxins11050262. |
[16] | BLOOM-ACKERMANN Z, STEINBERG N, ROSENBERG G, et al. Toxin-Antitoxin systems eliminate defective cells and preserve symmetry in Bacillus subtilis biofilms[J]. Environ Microbiol, 2016, 18(12):5032-5047. |
[17] | ORIOL C, CENGHER L, MANNA A C, et al. Expanding the Staphylococcus aureus SarA regulon to small RNAs[J]. mSystems, 2021, 6(5):e0071321. |
[18] | DOMKA J, LEE J, BANSAL T, et al. Temporal gene-expression in Escherichia coli K-12 biofilms[J]. Environ Microbiol, 2007, 9(2):332-346. |
[19] | MAIKOVA A, PELTIER J, BOUDRY P, et al. Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile[J]. Nucleic Acids Res, 2018, 46(9):4733-4751. |
[20] | GOEDERS N, VAN MELDEREN L. Toxin-antitoxin systems as multilevel interaction systems[J]. Toxins (Basel), 2014, 6(1):304-324. |
[21] | RÓWNICKI M, LASEK R, TRYLSKA J, et al. Targeting type II toxin-antitoxin systems as antibacterial strategies[J]. Toxins (Basel), 2020, 12(9):568. DOI:10. 3390/toxins12090568. |
[22] | YAMAGUCHI Y, INOUYE M. Regulation of growth and death in Escherichia coli by toxin-antitoxin systems[J]. Nat Rev Microbiol, 2011, 9(11):779-790. |
[23] | CHRISTENSEN-DALSGAARD M, JØRGENSEN M G, GERDES K. Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses[J]. Mol Microbiol, 2010, 75(2):333-348. |
[24] | KAMADA K, HANAOKA F. Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin[J]. Mol Cell, 2005, 19(4):497-509. |
[25] | PEDERSEN K, ZAVIALOV A V, PAVLOV M Y, et al. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site[J]. Cell, 2003, 112(1):131-140. |
[26] | PRYSAK M H, MOZDZIERZ C J, COOK A M, et al. Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage[J]. Mol Microbiol, 2009, 71(5):1071-1087. |
[27] | SCHMIDT O, SCHUENEMANN V J, HAND N J, et al. prlF and yhaV encode a new toxin-antitoxin system in Escherichia coli[J]. J Mol Biol, 2007, 372(4):894-905. |
[28] | YAMAGUCHI Y, PARK J H, INOUYE M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli[J]. J Biol Chem, 2009, 284(42):28746-28753. |
[29] | ZHANG Y L, ZHANG J J, HARA H, et al. Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase[J]. J Biol Chem, 2005, 280(5):3143-3150. |
[30] | ZHANG Y L, ZHU L, ZHANG J J, et al. Characterization of ChpBK, an mRNA interferase from Escherichia coli[J]. J Biol Chem, 2005, 280(28):26080-26088. |
[31] | 侯 博, 王晨燕, 栗绍文, 等. 一株ExPEC hicAB基因缺失株的构建及应用:中国, 109337850B[P]. 2022-01-11.HOU B, WANG C Y, LI S W, et al. Construction and application of ExPEC hicAB gene deleted strain:CN, 109337850B[P]. 2022-01-11. (in Chinese) |
[32] | 侯 博, 刘玉涛, 王晨燕, 等. 一株ExPEC yhaV-prlF基因缺失株的构建及应用:中国, 109294967B[P]. 2022-01-11.HOU B, LIU Y T, WANG C Y, et al. Construction and application of ExPEC yhaV-prlF gene deleted strain:CN, 109294967B[P]. 2022-01-11. (in Chinese) |
[33] | 侯 博, 刘玉涛, 王晨燕, 等. 一株ExPEC yafON基因缺失株的构建及应用:中国, 109337849B[P]. 2022-01-11.HOU B, LIU Y T, WANG C Y, et al. Construction and application of ExPEC yafON gene deleted strain:CN, 109337849B[P]. 2022-01-11. (in Chinese) |
[34] | 侯 博, 王晨燕, 车勇良, 等. 毒素-抗毒素系统yafON缺失对ExPEC生物被膜形成的影响[J]. 福建畜牧兽医, 2020, 42(5):4-7.HOU B, WANG C Y, CHE Y L, et al. The deletion of toxin-antitoxin yafON influence biofilm formation in ExPEC[J]. Fujian Journal of Animal Husbandry and Veterinary Medicine, 2020, 42(5):4-7. (in Chinese) |
[35] | KASARI V, KURG K, MARGUS T, et al. The Escherichia coli mqsR and ygiT genes encode a new toxin-antitoxin pair[J]. J Bacteriol, 2010, 192(11):2908-2919. |
[36] | SOO V W C, WOOD T K. Antitoxin MqsA represses curli formation through the master biofilm regulator CsgD[J]. Sci Rep, 2013, 3:3186, doi:10. 1038/srep03186. |
[37] | WANG X X, WOOD T K. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response[J]. Appl Environ Microbiol, 2011, 77(16):5577-5583. |
[38] | WANG X X, LORD D M, CHENG H Y, et al. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS[J]. Nat Chem Biol, 2012, 8(10):855-861. |
[39] | FRAIKIN N, ROUSSEAU C J, GOEDERS N, et al. Reassessing the role of the type II MqsRA toxin-antitoxin system in stress response and biofilm formation:mqsA is transcriptionally uncoupled from mqsR[J]. mBio, 2019, 10(6):e02678-19, doi:10. 1128/mBio. 02678-19. |
[40] | KIM Y, WANG X X, MA Q, et al. Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae[J]. J Bacteriol, 2009, 191(4):1258-1267. |
[41] | HARRISON J J, WADE W D, AKIERMAN S, et al. The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm[J]. Antimicrob Agents Chemother, 2009, 53(6):2253-2258. |
[42] | XU J, XIA K, LI P Y, et al. Functional investigation of the chromosomal ccdAB and hipAB operon in Escherichia coli Nissle 1917[J]. Appl Microbiol Biotechnol, 2020, 104(15):6731-6747. |
[43] | RECACHA E, MACHUCA J, DíAZ-DÍAZ S, et al. Suppression of the SOS response modifies spatiotemporal evolution, post-antibiotic effect, bacterial fitness and biofilm formation in quinolone-resistant Escherichia coli[J]. J Antimicrob Chemother, 2019, 74(1):66-73. |
[44] | LASARO M A, SALINGER N, ZHANG J, et al. F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917[J]. Appl Environ Microbiol, 2009, 75(1):246-251. |
[45] | ZHAO J Q, WANG Q, LI M J, et al. Escherichia coli toxin gene hipA affects biofilm formation and DNA release[J]. Microbiology (Reading), 2013, 159(Pt 3):633-640. |
[46] | SCHUMACHER M A, PIRO K M, XU W J, et al. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB[J]. Science, 2009, 323(5912):396-401. |
[47] | WOOD T L, WOOD T K. The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation[J]. Microbiologyopen, 2016, 5(3):499-511. |
[48] | ZHANG Y Y, XIA B, LI M, et al. HigB reciprocally controls biofilm formation and the expression of type III secretion system genes through influencing the intracellular c-di-GMP level in Pseudomonas aeruginosa[J]. Toxins (Basel), 2018, 10(11):424, doi:10. 3390/toxins10110424. |
[49] | SOARES A, ROUSSEL V, PESTEL-CARON M, et al. Understanding ciprofloxacin failure in Pseudomonas aeruginosa biofilm:persister cells survive matrix disruption[J]. Front Microbiol, 2019, 10:2603, doi:10. 3389/fmicb. 2019. 02603. |
[50] | LI G, SHEN M Y, LU S G, et al. Identification and characterization of the HicAB toxin-antitoxin system in the opportunistic pathogen Pseudomonas aeruginosa[J]. Toxins (Basel), 2016, 8(4):113, doi:10. 3390/toxins8040113. |
[51] | MA D Z, MANDELL J B, DONEGAN N P, et al. The toxin-antitoxin MazEF drives Staphylococcus aureus biofilm formation, antibiotic tolerance, and chronic infection[J]. mBio, 2019, 10(6):e1619-e1658, doi:10. 1128/mBio. 01658-19. |
[52] | ABD EL RAHMAN A, EL KHOLY Y, SHASH R Y. Correlation between mazEF toxin-antitoxin system expression and methicillin susceptibility in Staphylococcus aureus and its relation to biofilm-formation[J]. Microorganisms, 2021, 9(11):2274, doi:10. 3390/microorganisms9112274. |
[53] | QI X Y, BROTHERS K M, MA D Z, et al. The Staphylococcus aureus toxin-antitoxin system YefM-YoeB is associated with antibiotic tolerance and extracellular dependent biofilm formation[J]. J Bone Jt Infect, 2021, 6(7):241-253. |
[54] | CHAN W T, DOMENECH M, MORENO-CÓRDOBA I, et al. The Streptococcus pneumoniae yefM-yoeB and relBE toxin-antitoxin operons participate in oxidative stress and biofilm formation[J]. Toxins (Basel), 2018, 10(9):378, doi:10. 3390/toxins10090378. |
[55] | MA D M, GU H J, SHI Y J, et al. Edwardsiella piscicida YefM-YoeB:a type II toxin-antitoxin system that is related to antibiotic resistance, biofilm formation, serum survival, and host infection[J]. Front Microbiol, 2021, 12:646299, doi:10. 3389/fmicb. 2021. 646299. |
[56] | BLOWER T R, SALMOND G P, LUISI B F. Balancing at survival's edge:the structure and adaptive benefits of prokaryotic toxin-antitoxin partners[J]. Curr Opin Struct Biol, 2011, 21(1):109-118. |
[57] | WEN Z L, WANG P X, SUN C L, et al. Interaction of type IV toxin/antitoxin systems in cryptic prophages of Escherichia coli K-12[J]. Toxins (Basel), 2017, 9(3):77, doi:10. 3390/toxins9030077. |
[58] | MASUDA H, TAN Q, AWANO N, et al. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli[J]. Mol Microbiol, 2012, 84(5):979-989. |
[59] | WANG X X, LORD D M, HONG S H, et al. Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS[J]. Environ Microbiol, 2013, 15(6):1734-1744. |
[60] | AAKRE C D, PHUNG T N, HUANG D, et al. A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp[J]. Mol Cell, 2013, 52(5):617-628. |
[61] | MARKOVSKI M, WICKNER S. Preventing bacterial suicide:a novel toxin-antitoxin strategy[J]. Mol Cell, 2013, 52(5):611-612. |
[62] | WANG X X, YAO J Y, SUN Y C, et al. Type VII toxin/antitoxin classification system for antitoxins that enzymatically neutralize toxins[J]. Trends Microbiol, 2021, 29(5):388-393. |
[63] | MARIMON O, TEIXEIRA J M C, CORDEIRO T N, et al. An oxygen-sensitive toxin-antitoxin system[J]. Nat Commun, 2016, 7:13634, doi:10. 1038/ncomms13634. |
[64] | GARCÍA-CONTRERAS R, ZHANG X S, KIM Y, et al. Protein translation and cell death:the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes[J]. PLoS One, 2008, 3(6):e2394, doi:10. 1371/journal. pone. 0002394. |
[65] | CHOI J S, KIM W, SUK S, et al. The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli[J]. RNA Biol, 2018, 15(10):1319-1335. |
[66] | GUTIERREZ A, LAURETI L, CRUSSARD S, et al. β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity[J]. Nat Commun, 2013, 4:1610, doi:10. 1038/ncomms2607. |
[67] | FRÖHLICH K S, HANEKE K, PAPENFORT K, et al. The target spectrum of SdsR small RNA in Salmonella[J]. Nucleic Acids Res, 2016, 44(21):10406-10422. |
[68] | HOU B, MENG X R, ZHANG L Y, et al. TolC promotes ExPEC biofilm formation and curli production in response to medium osmolarity[J]. Biomed Res Int, 2014, 2014:574274, doi:10. 1155/2014/574274. |
[69] | BAUGH S, EKANAYAKA A S, PIDDOCK L J V, et al. Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm[J]. J Antimicrob Chemother, 2012, 67(10):2409-2417. |
[1] | LONG Tanghui, ZHOU Jianghui, ZHAN Yanbo, ZHANG Jian, ZHAO Xianghui, LI Yanjiao, OUYANG Kehui, QIU Qinghua. Research Progress on LuxS/AI-2 Quorum Sensing of Rumen Microbe in Ruminants [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1893-1903. |
[2] | HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411. |
[3] | GAO Yuanji, LIU Chang, CHEN Miao, CHEN Songbiao, ZHANG Junfeng, LI Jing, JIA Yanyan, LIAO Chengshui, GUO Rongxian, DING Ke, YU Zuhua, SHANG Ke. Structure, Secretory Characteristics, and Pathogenic Mechanism of Bacterial Outer Membrane Vesicles [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 971-983. |
[4] | WANG Kang, LIU Geyan, WANG Yu, YANG Zhen, TANG Xinwei, CAO Sanjie, HUANG Xiaobo, YAN Qigui, WU Rui, ZHAO Qin, DU Senyan, WEN Xintian, WEN Yiping. Preparation of Glaesserella parasuis Ghosts Vaccine Delivering Porcine Circovirus Type 2 DNA Vaccine and Evaluation of Its Immunoprotective Effect in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1179-1191. |
[5] | FU Xuezhen, LI Xincan, QIAN Hongyu, LÜ Hong, WU Chanyu, WANG Xiaohan, WANG Xiaohua, WANG Zhiying, ZHOU Zuoyong. Antibacterial Effect and Mechanism of Bergamot Essential Oil on Corynebacterium pseudotuberculosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1217-1227. |
[6] | MI Hui, PENG Can, HE Zhixiong, TAN Zhiliang. Separation of Sheep Secretory Immunoglobulin A Coated Bacteria by Flow Cytometry [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2924-2931. |
[7] | MAO Peng, WANG Zhihao, LI Jianji, CUI Luying, ZHU Guoqiang, MENG Xia, DONG Junsheng, WANG Heng. Research Progress of Ferroptosis in Bacterial Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2280-2287. |
[8] | HONG Bo, SUN Qi, LI Dongfan, YU Xuexiang, KU Xugang, HE Qigai. Investigation of Bacterial Communities in Water Samples from Flood-affected Pig Farms Using 16S rDNA High-throughput Sequencing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2092-2100. |
[9] | SUN Yufan, YU Panyuan, CHEN Hongyu, TAN Yiqing, CHEN Xiabing, ZHANG Tengfei, GAO Ting, ZHOU Rui, LI Lu. Evaluation of the Efficacy of Potassium Diformate in the Prevention of Salmonella Infection and the Effect on Intestinal Flora [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2101-2113. |
[10] | WANG Weihao, DUAN Yan, WANG Hongdi, DOU Lu, LIU Ting, KANG Letian, SUN Lina, AO Tehenggerile, JIN Ye. Effects of Feeding Regimens on Growth Performance, Slaughter Performance, Meat Quality and Rumen Bacteria Community of Sunit Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1085-1094. |
[11] | LIU Guang, GONG Chengyan, NIU Kaimin, ZHANG Shuo, TAO Deng, MA Jun, WU Xin, YIN Yulong, TANG Yulong. Study on Biological Activity of the Residue and Fermentation Products of Lianhua Qingwen [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1281-1299. |
[12] | HE Xianjing, LIU Jiao, WANG Zhihui, WU Rui, GUO Donghua. Adhesion Characterization of 43K OMP in Fusobacterium necrophorum subsp. necrophorum [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 726-735. |
[13] | LI Chao, ZHAO Xueyan, WANG Yongjun, WANG Yanping, REN Yifan, LI Jingxuan, WANG Huaizhong, WANG Jiying, SONG Qinye. Analysis on the Structural Composition and Function of Bacterial Microbiota of Caecum and Colon in Laiwu and DLY pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5033-5045. |
[14] | HAO Ruochen, TANG Minjia, LIU Guangliang, ZHANG Yan, MUHAMMAD Shoaib, SHANG Ruofeng, CAO Zongxi, PU Wanxia. Distribution and Genotyping of Major Enterobacteriaceae Bacteria in Milk Sources and Dairy Farm Environment of Hainan Province [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5184-5197. |
[15] | LI Lili, CHEN Kaifeng, CHEN Bing, ZHOU Zhouping, WANG Nanwei, QU Xiaoyun, XU Chenggang, LIAO Ming, ZHANG Jianmin. Regulatory Role of STM1827 in the Biofilm Formation and Environmental Stress of Salmonella Typhimurium [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5207-5217. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||