Acta Veterinaria et Zootechnica Sinica ›› 2020, Vol. 51 ›› Issue (5): 943-951.doi: 10.11843/j.issn.0366-6964.2020.05.006
• REVIEW • Previous Articles Next Articles
DAI Xueyu, ZHANG Qianyi, XU Lu, ZHAO Qizu, WANG Qin, XIA Yingju*
Received:
2019-12-30
Online:
2020-05-25
Published:
2020-05-16
CLC Number:
DAI Xueyu, ZHANG Qianyi, XU Lu, ZHAO Qizu, WANG Qin, XIA Yingju. Research Progress and Application of CRISPR/Cas9 Gene Editing Technology in Prevention and Control of Important Swine Virus Diseases[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 943-951.
[1] | HORVATH P, BARRANGOU R. CRISPR/Cas, the immune system of bacteria and archaea[J]. Science, 2010, 327(5962):167-170. |
[2] | 杨发誉, 葛香连, 谷峰. 新型靶向基因组编辑技术研究进展[J]. 中国生物工程杂志, 2014, 34(2):98-103.YANG F Y, GE X L, GU F. Progress of next-generation targeted gene-editing techniques[J]. China Biotechnology, 2014, 34(2):98-103. (in Chinese) |
[3] | EBINA H, MISAWA N, KANEMURA Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus[J]. Sci Rep, 2013, 3:2510. |
[4] | HU W H, KAMINSKI R, YANG F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection[J]. Proc Natl Acad Sci U S A, 2014, 111(31):11461-11466. |
[5] | 李晓开, 龙科任, 麦苗苗, 等. CRISPR-Cas9技术的原理及其在猪研究中的应用[J]. 生命科学, 2018, 30(6):690-700.LI X K, LONG K R, MAI M M, et al. The principle of CRISPR-Cas9 technology and its application in pig research[J]. Chinese Bulletin of Life Sciences, 2018, 30(6):690-700. (in Chinese) |
[6] | INUI M, MIYADO M, IGARASHI M, et al. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system[J]. Sci Rep, 2015, 4:5396. |
[7] | HECKL D, KOWALCZYK M S, YUDOVICH D, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing[J]. Nat Biotechnol, 2014, 32(9):941-946. |
[8] | SOREK R, KUNIN V, HUGENHOLTZ P. CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea[J]. Nat Rev Microbiol, 2008, 6(3):181-186. |
[9] | MAKAROVA K S, ARAVIND L, WOLF Y I, et al. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems[J]. Biol Direct, 2011, 6:38. |
[10] | MAKAROVA K S, HAFT D H, BARRANGOU R, et al. Evolution and classification of the CRISPR-Cas systems[J]. Nat Rev Microbiol, 2011, 9(6):467-477. |
[11] | MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2015, 13(11):722-736. |
[12] | MAKAROVA K S, WOLF Y I, KOONIN E V. Classification and nomenclature of CRISPR-cas systems:where from here?[J]. CRISPR J, 2018, 1(5):325-336. |
[13] | ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987, 169(12):5429-5433. |
[14] | JANSEN R, VAN EMBDEN J D A, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol, 2002, 43(6):1565-1575. |
[15] | BOLOTIN A, QUINQUIS B, SOROKIN A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology, 2005, 151(8):2551-2561. |
[16] | BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712. |
[17] | MARRAFFINI L A, SONTHEIMER E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science, 2008, 322(5909):1843-1845. |
[18] | RAN F A, HSU P D, WRIGHT J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11):2281-2308. |
[19] | JINEK M, EAST A, CHENG A, et al. RNA-programmed genome editing in human cells[J]. eLife, 2013, 2:e00471. |
[20] | HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278. |
[21] | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. |
[22] | LIEBER M R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway[J]. Ann Rev Biochem, 2010, 79:181-211. |
[23] | RUDIN N, SUGARMAN E, HABER J E. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae[J]. Genetics, 1989, 122(3):519-534. |
[24] | JAO L E, WENTE S R, CHEN W B. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system[J]. Proc Natl Acad Sci U S A, 2013, 110(34):13904-13909. |
[25] | PORT F, CHEN H M, LEE T, et al. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila[J]. Proc Natl Acad Sci U S A, 2014, 111(29):E2967-E2976. |
[26] | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. |
[27] | MALI P, YANG L H, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. |
[28] | XU L, WANG J, LIU Y L, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia[J]. N Engl J Med, 2019, 381(13):1240-1247. |
[29] | FAO. World agriculture:towards 2015/2030[DB/OL].[2020-01-18] http://www.fao.org/3/Y4252E/y4252e05b.htm#P3_3. |
[30] | 杜金芳, 王慧. 转基因猪的研究进展[J]. 猪业科学, 2009, 26(9):82-84.DU J F, WANG H. Research progress of transgenic swine[J]. Swine Industry Science, 2009, 26(9):82-84. (in Chinese) |
[31] | HAI T, TENG F, GUO R F, et al. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J]. Cell Res, 2014, 24(3):372-375. |
[32] | WANG K P, JIN Q, RUAN D G, et al. Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing[J]. Genome Res, 2017, 27(12):2061-2071. |
[33] | YANG H Q, WU Z F. Genome editing of pigs for agriculture and biomedicine[J]. Front Genet, 2018, 9:360. |
[34] | NIU D, WEI H J, LIN L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J]. Science, 2017, 357(6357):1303-1307. |
[35] | HAUSCHILD J, PETERSEN B, SANTIAGO Y, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases[J]. Proc Natl Acad Sci U S A, 2011, 108(29):12013-12017. |
[36] | CARLSON D F, TAN W F, LILLICO S G, et al. Efficient TALEN-mediated gene knockout in livestock[J]. Proc Natl Acad Sci U S A, 2012, 109(43):17382-17387. |
[37] | WHITWORTH K M, LEE K, BENNE J A, et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J]. Biol Reprod, 2014, 91(3):78. |
[38] | PRATHER R S, WELLS K D, WHITWORTH K M, et al. Knockout of maternal CD163 protects fetuses from infection with porcine reproductive and respiratory syndrome virus (PRRSV)[J]. Sci Rep, 2017, 7(1):13371. |
[39] | BURKARD C, LILLICO S G, REID E, et al. Precision engineering for PRRSV resistance in pigs:macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathog, 2017, 13(2):e1006206. |
[40] | CHEN J Y, WANG H T, BAI J H, et al. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163[J]. Int J Biol Sci, 2019, 15(2):481-492. |
[41] | XIE Z C, PANG D X, YUAN H M, et al. Genetically modified pigs are protected from classical swine fever virus[J]. PLoS Pathog, 2018, 14(12):e1007193. |
[42] | XU D, DU Q, HAN C, et al. P53 signaling modulation of cell cycle arrest and viral replication in porcine circovirus type 2 infection cells[J]. Vet Res, 2016, 47:120. |
[43] | LI P F, ZHANG X L, CAO W J, et al. RIG-I is responsible for activation of type I interferon pathway in Seneca Valley virus-infected porcine cells to suppress viral replication[J]. Virol J, 2018, 15(1):162. |
[44] | SUI C, JIANG D D, WU X J, et al. CRISPR-Cas9 mediated RNase L knockout regulates cellular function of PK-15 cells and increases PRV replication[J]. BioMed Res Int, 2019, 2019:7398208. |
[45] | HVBNER A, PETERSEN B, KEIL G M, et al. Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene (CP204L)[J]. Sci Rep, 2018, 8:1449. |
[46] | LIANG X, SUN L Q, YU T, et al. A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging pseudorabies virus[J]. Sci Rep, 2016, 6:19176. |
[47] | BORCA M V, HOLINKA L G, BERGGREN K A, et al. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses[J]. Sci Rep, 2018, 8(1):3154. |
[48] | TANG Y D, LIU J T, WANG T T, et al. CRISPR/Cas9-mediated multiple single guide RNAs potently abrogate pseudorabies virus replication[J]. Arch Virol, 2017, 162(12):3881-3886. |
[49] | PENG Q, FANG L R, DING Z, et al. Rapid manipulation of the porcine epidemic diarrhea virus genome by CRISPR/Cas9 technology[J]. J Virol Methods, 2020, 276:113772. |
[50] | TONG G Z, ZHOU Y J, HAO X F, et al. Highly pathogenic porcine reproductive and respiratory syndrome, China[J]. Emerg Infect Dis, 2007, 13(9):1434-1436. |
[51] | 赵鸿远, 彭金美, 安同庆, 等. 猪伪狂犬病病毒变异株的分离鉴定及其gE基因的分子特征[J]. 中国预防兽医学报, 2014, 36(7):506-509.ZHAO H Y, PENG J M, AN T Q, et al.Identification of glycoprotein E characteristic in pseudorabies virus variants from swine[J]. Chinese Journal of Preventive Veterinary Medicine, 2014, 36(7):506-509.(in Chinese) |
[52] | 施标, 董世娟, 朱于敏, 等. 中国猪流行性腹泻病毒分子流行病学研究进展[J]. 中国农业科学, 2013, 46(20):4362-4369.SHI B, DONG S J, ZHU Y M, et al. Advances in study of molecular epidemiology of porcine epidemic diarrhea virus in China[J]. Scientia Agricultura Sinica, 2013, 46(20):4362-4369. (in Chinese) |
[53] | PALINSKI R, PIÑEYRO P, SHANG P C, et al. A novel porcine circovirus distantly related to known circoviruses is associated with porcine dermatitis and nephropathy syndrome and reproductive failure[J]. J Virol, 2017, 91(1):e01879-16. |
[54] | ZHU Z, YANG F, CHEN P, et al. Emergence of novel Seneca Valley virus strains in China, 2017[J]. Transbound Emerg Dis, 2017, 64(4):1024-1029. |
[55] | HAUSE B M, COLLIN E A, PEDDIREDDI L, et al. Discovery of a novel putative atypical porcine pestivirus in pigs in the USA[J]. J Gen Virol, 2015, 96(10):2994-2998. |
[56] | WANG T, SUN Y, QIU H J. African swine fever:an unprecedented disaster and challenge to China[J]. Infect Dis Poverty, 2018, 7(1):111. |
[57] | MARCEAU C D, PUSCHNIK A S, MAJZOUB K et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens[J]. Nature, 2016, 535(7610):159-163. |
[58] | SAVIDIS G, MCDOUGALL W M, MERANER P, et al. Identification of zika virus and dengue virus dependency factors using functional genomics[J]. Cell Rep, 2016, 16(1):232-246. |
[59] | PUSCHNIK A S, MAJZOUB K, OOI Y S, et al. A CRISPR toolbox to study virus-host interactions[J]. Nat Rev Microbiol, 2017, 15(6):351-364. |
[60] | FU Y F, FODEN J A, KHAYTER C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9):822-826. |
[61] | HSU P D, SCOTT D A, WEINSTEIN J A, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9):827-832. |
[62] | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771. |
[63] | ENGREITZ J, ABUDAYYEH O, GOOTENBERG J, et al. CRISPR tools for systematic studies of RNA regulation[J]. Cold Spring Harb Perspect Biol, 2019, 11(8):a035386. |
[64] | WANG Q X, LIU X, ZHOU J H, et al. The CRISPR-Cas13a gene-editing system induces collateral cleavage of RNA in glioma cells[J]. Adv Sci, 2019, 6(20):1901299. |
[1] | LI Jiannan, YUAN Liming, HUA Jinlian. Progress on the Application of CD46 in Breeding of Livestock for Disease Resistance [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1866-1874. |
[2] | QIU Meiyu, ZHANG Xuemei, ZHANG Ning, LIU Mingjun. Approach and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1345-1355. |
[3] | WANG Jiali, YANG Fan, SHAO Wenhua, HUANG Mengyao, CAO Weijun, PU Xiuying, ZHANG Wei, ZHENG Haixue. Construction of Tollip Knockout Pig Kidney Cell Line [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1810-1818. |
[4] | WU Shangjie, LUAN Yuanyuan, WANG Mingkun, ZHANG Hechun, YU Bo, MA Yuehui, JIANG Lin, HE Xiaohong. Advances of Disease-Resistant Breeding on Ovine Brucellosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 882-893. |
[5] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
[6] | FEI Xiaoyu, SHI Chaoqun, LIU Xueming, SU Feng, JIANG Yunliang. CRISPR/Cas9 System Mediated Gene Modificated MRC1 in PK15 Cells Reduce PCV2 Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 934-946. |
[7] | CHEN Junzhen, QUAN Ran, FU Qiang, GE Lijuan, YUAN Yuanyuan, ZHANG Chengyuan, LI Jianlin, SHI Huijun. Study on the Effect of Heat Shock Protein HSP90B1 on the Replication of Bovine Viral Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 683-693. |
[8] | ZHANG Shuo, ZHOU Yuxiao, WU Haibo, SUO Lun. Dynamics of Gene Editing Consequence Mediated by Long-term CRISPR/Cas9 System [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4196-4208. |
[9] | DENG Min'er, LI Na, GUO Yaqiong, FENG Yaoyu, XIAO Lihua. Application of CRISPR/Cas9 System on Gene Editing of Parasitic Protozoa [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 69-79. |
[10] | ZHAO Weimin, WANG Huili, CAO Shaoxian, GUO Rihong, WANG Zeping, CHEN Zhe, XU Kui, FU Yanfeng, LI Bixia, REN Shouwen, CHENG Jinhua. The Study of Base Editing of Porcine CD163 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1041-1050. |
[11] | LI Zhaolong, ZHANG Huifang, FENG Zhihua, FANG Zhou. Therapeutic Effect of Recombinant Adeno-Associated Virus Carrying CRISPR/Cas9 on Pseudorabies Virus-infected Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 834-846. |
[12] | LUO Jun, LIU Jinling, ZHENG Luping, LUO Qin, TENG Man. Recent Advances in Engineering Avian Herpesviruses by CRISPR/Cas9-based Gene Editing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3335-3344. |
[13] | WANG Pei, WANG Meng, LI Tingting, ZHENG Xiaonan, LIANG Qinli, CHEN Xiaoqing. Generation and Basic Functional Characterization of Four Hypothetical Protein Genes Deletion Strains of Toxoplasma gondii [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3598-3608. |
[14] | LI Chen, HE Wenfeng, ZHAO Lina, FAN Qi, YANG Guoqing, LIU Huimin. Effect of Interferon Stimulated Gene 15 Knockout in PK-15 Cell Line on Replication of Pseudorabies Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3621-3630. |
[15] | WANG Shengnan, WANG Dandan, TIAN Wenjie, PU Yabin, PAN Dengke, XING Xiangyang, MA Yuehui, JIANG Lin. Mechanism of ZBED6 Gene on Spleen Development of Bama Xiang Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2394-2405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||