

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (9): 4232-4240.doi: 10.11843/j.issn.0366-6964.2025.09.009
• Review • Previous Articles Next Articles
SUI Jinyu1,2,3(
), WU Yunpu4, LI Chao1,2,3, WANG Suchun1,2,3, PAN Junhui1,2,3, QI Qian1,2,3, WEI Shimeng1,2,3, WANG Kaicheng1,2,3,*(
)
Received:2024-11-01
Online:2025-09-23
Published:2025-09-30
Contact:
WANG Kaicheng
E-mail:suijinyu@cahec.cn;wangkaicheng@cahec.cn
CLC Number:
SUI Jinyu, WU Yunpu, LI Chao, WANG Suchun, PAN Junhui, QI Qian, WEI Shimeng, WANG Kaicheng. Analysis of the Threat Posed to Human and Mammalian Health by H5 Subtype Influenza Virus[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4232-4240.
| 1 |
HARFOOT R , WEBBY R J . H5 influenza, a global update[J]. J Microbiol, 2017, 55 (3): 196- 203.
doi: 10.1007/s12275-017-7062-7 |
| 2 |
LI Y , LI M , LI Y , et al. Outbreaks of highly pathogenic avian influenza (H5N6) virus subclade 2.3.4.4h in swans, Xinjiang, Western China, 2020[J]. Emerg Infect Dis, 2020, 26 (12): 2956- 2960.
doi: 10.3201/eid2612.201201 |
| 3 |
CUI Y , LI Y , LI M , et al. Evolution and extensive reassortment of H5 influenza viruses isolated from wild birds in China over the past decade[J]. Emerg Microbes Infect, 2020, 9 (1): 1793- 1803.
doi: 10.1080/22221751.2020.1797542 |
| 4 |
CUI P , SHI J , WANG C , et al. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China[J]. Emerg Microbes Infect, 2022, 11 (1): 1693- 1704.
doi: 10.1080/22221751.2022.2088407 |
| 5 | World Health Organization. High pathogenicity avian influenza (HPAI)-situation report 66[EB/OL]. [2025-01-21]. https://www.woah.org/en/document/high-pathogenicity-avian-influenza-hpai-situation-report-66/. |
| 6 | Centers for Disease Control and Prevention of the United States of America. H5 bird flu: current situation[EB/OL]. [2025-01-21]. https://www.cdc.gov/bird-flu/situation-summary/index.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fbird-flu%2Fphp%2Favian-flu-summary%2Findex.html. |
| 7 |
KRAMMER F , SCHULTZ-CHERRY S . We need to keep an eye on avian influenza[J]. Nat Rev Immunol, 2023, 23 (5): 267- 268.
doi: 10.1038/s41577-023-00868-8 |
| 8 |
ELLIS T M , BOUSFIELD R B , BISSETT L A , et al. Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002[J]. Avian Pathol, 2004, 33 (5): 492- 505.
doi: 10.1080/03079450400003601 |
| 9 | YANG J , ZHANG C , YUAN Y , et al. Novel avian influenza virus (H5N1) clade 2.3.4.4b reassortants in migratory birds, China[J]. Emerg Infect Dis, 2023, 29 (6): 1244- 1249. |
| 10 | LEE Y J , KANG H M , LEE E K , et al. Novel reassortant influenza A(H5N8) viruses, South Korea, 2014[J]. Emerg Infect Dis, 2014, 20 (6): 1087- 1089. |
| 11 | WU H , PENG X , XU L , et al. Novel reassortant influenza A(H5N8) viruses in domestic ducks, eastern China[J]. Emerg Infect Dis, 2014, 20 (8): 1315- 1318. |
| 12 |
LI M , LIU H , BI Y , et al. Highly pathogenic avian influenza A(H5N8) virus in wild migratory birds, Qinghai Lake, China[J]. Emerg Infect Dis, 2017, 23 (4): 637- 641.
doi: 10.3201/eid2304.161866 |
| 13 |
LEE D H , BERTRAN K , KWON J H , et al. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4[J]. J Vet Sci, 2017, 18 (S1): 269- 280.
doi: 10.4142/jvs.2017.18.S1.269 |
| 14 | ADLHOCH C , FUSARO A , KUIKEN T , et al. Avian influenza overview November 2019- February 2020[J]. EFSA J, 2020, 18 (3): e06096. |
| 15 |
GU W , SHI J , CUI P , et al. Novel H5N6 reassortants bearing the clade 2.3.4.4b HA gene of H5N8 virus have been detected in poultry and caused multiple human infections in China[J]. Emerg Microbes Infect, 2022, 11 (1): 1174- 1185.
doi: 10.1080/22221751.2022.2063076 |
| 16 |
KING J , HARDER T , GLOBIG A , et al. Highly pathogenic avian influenza virus incursions of subtype H5N8, H5N5, H5N1, H5N4, and H5N3 in Germany during 2020-21[J]. Virus Evol, 2022, 8 (1): veac035.
doi: 10.1093/ve/veac035 |
| 17 |
LEWIS N S , BANYARD A C , WHITTARD E , et al. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020[J]. Emerg Microbes Infect, 2021, 10 (1): 148- 151.
doi: 10.1080/22221751.2021.1872355 |
| 18 | GRAZIOSI G , LUPINI C , CATELLI E , et al. Highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4b virus infection in birds and mammals[J]. Animals (Basel), 2024, 14 (9): 1372. |
| 19 | TIAN J , BAI X , LI M , et al. Highly pathogenic avian influenza virus (H5N1) clade 2.3.4.4b introduced by wild birds, China, 2021[J]. Emerg Infect Dis, 2023, 29 (7): 1367- 1375. |
| 20 | European Food Safety Authority . Avian influenza overview December 2021-March 2022[J]. EFSA J, 2022, 20 (4): e07289. |
| 21 | United States Department of Agriculture. Detections of highly pathogenic avian influenza in wild birds[EB/OL]. [2025-01-21]. https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/wild-birds. |
| 22 | United States Department of Agriculture. 2022-2023 highly pathogenic avian influenza outbreak[EB/OL]. [2025-01-21]. https://www.aphis.usda.gov/sites/default/files/hpai-2022-2023-summary-depop-analysis.pdf. |
| 23 | Food and Agriculture Organization of the United Nations. Global avian influenza viruses with zoonotic potential situation update[EB/OL]. [2025-01-21]. https://www.fao.org/animal-health/situation-updates/global-aiv-with-zoonotic-potential/bird-species-affected-by-h5nx-hpai/en. |
| 24 | World Organization for Animal Health. Cases of avian influenza in mammals[EB/OL]. [2025-01-21]. https://www.woah.org/en/disease/avian-influenza/#ui-id-2. |
| 25 | BURROUGH E R , MAGSTADT D R , PETERSEN B , et al. Highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus infection in domestic dairy cattle and cats, United States, 2024[J]. Emerg Infect Dis, 2024, 30 (7): 1335- 1343. |
| 26 |
EISFELD A J , BISWAS A , GUAN L , et al. Pathogenicity and transmissibility of bovine H5N1 influenza virus[J]. Nature, 2024, 633 (8029): 426- 432.
doi: 10.1038/s41586-024-07766-6 |
| 27 | NELLI R K , HARM T A , SIEPKER C , et al. Sialic acid receptor specificity in mammary gland of dairy cattle infected with highly pathogenic avian influenza A(H5N1) virus[J]. Emerg Infect Dis, 2024, 30 (7): 1361- 1373. |
| 28 | 陈化兰, 朱启运, 徐帅. 流感病毒跨种传播与感染致病机制研究进展[J]. 兰州大学学报(医学版), 2023, 49 (5): 1- 7. |
| CHEN H L , ZHU Q Y , XU S . Advances on the cross-species transmission and pathogenesis of influenza virus[J]. Journal of Lanzhou University (Medical Sciences), 2023, 49 (5): 1- 7. | |
| 29 | 郭雨欣, 周栋梁, 蒲娟, 等. PB2基因在流感病毒跨物种传播和哺乳动物适应性中的作用及机制研究进展[J]. 中国家禽, 2024, 46 (11): 121- 131. |
| GUO Y X , ZHOU D L , PU J , et al. Advances on role and mechanism of PB2 gene in cross-species transmission and mammalian adaptation of influenza viruses[J]. China Poultry, 2024, 46 (11): 121- 131. | |
| 30 |
SHIN D L , SIEBERT U , LAKEMEYER J , et al. Highly pathogenic avian influenza A(H5N8) virus in gray seals, Baltic Sea[J]. Emerg Infect Dis, 2019, 25 (12): 2295- 2298.
doi: 10.3201/eid2512.181472 |
| 31 |
LEGUIA M , GARCIA-GLAESSNER A , MUÑOZ-SAAVEDRA B , et al. Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru[J]. Nat Commun, 2023, 14 (1): 5489.
doi: 10.1038/s41467-023-41182-0 |
| 32 | ULLOA M , FERNÁNDEZ A , ARIYAMA N , et al. Mass mortality event in South American sea lions (Otaria flavescens) correlated to highly pathogenic avian influenza (HPAI) H5N1 outbreak in Chile[J]. Vet Q, 2023, 43 (1): 1- 10. |
| 33 |
MURAWSKI A , FABRIZIO T , OSSIBOFF R , et al. Highly pathogenic avian influenza A(H5N1) virus in a common bottlenose dolphin (Tursiops truncatus) in Florida[J]. Commun Biol, 2024, 7 (1): 476.
doi: 10.1038/s42003-024-06173-x |
| 34 |
YANG Z Y , WEI C J , KONG W P , et al. Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity[J]. Science, 2007, 317 (5839): 825- 828.
doi: 10.1126/science.1135165 |
| 35 |
TOMAS G , MARANDINO A , PANZERA Y , et al. Highly pathogenic avian influenza H5N1 virus infections in pinnipeds and seabirds in Uruguay: Implications for bird-mammal transmission in South America[J]. Virus Evol, 2024, 10 (1): veae031.
doi: 10.1093/ve/veae031 |
| 36 | Centers for Disease Control and Prevention of the United States of America. Human infection with highly pathogenic avian influenza A(H5N1) virus in Chile[EB/OL]. [2025-01-21]. https://www.cdc.gov/bird-flu/spotlights/chile-first-case-h5n1-addendum.html?CDC_AAref_Val=https://www.cdc.gov/flu/avianflu/spotlights/2022-2023/chile-first-case-h5n1-addendum.htm. |
| 37 |
LI B , SU G , XIAO C , et al. The PB2 co-adaptation of H10N8 avian influenza virus increases the pathogenicity to chickens and mice[J]. Transbound Emerg Dis, 2022, 69 (4): 1794- 1803.
doi: 10.1111/tbed.14157 |
| 38 |
PEACOCK T P , SHEPPARD C M , LISTER M G , et al. Mammalian ANP32A and ANP32B proteins drive differential polymerase adaptations in avian influenza virus[J]. J Virol, 2023, 97 (5): e0021323.
doi: 10.1128/jvi.00213-23 |
| 39 |
CHEN G W , KUO S M , YANG S L , et al. Genomic signatures for avian H7N9 viruses adapting to humans[J]. PLoS One, 2016, 11 (2): e0148432.
doi: 10.1371/journal.pone.0148432 |
| 40 | AGUERO M , MONNE I , SANCHEZ A , et al. Highly pathogenic avian influenza A (H5N1) virus infection in farmed minks, Spain, October 2022[J]. Euro Surveill, 2023, 28 (3): 2300001. |
| 41 |
ZHANG Y , ZHANG Q , GAO Y , et al. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus[J]. J Virol, 2012, 86 (18): 9666- 9674.
doi: 10.1128/JVI.00958-12 |
| 42 | DE VRIES E , DE HAAN C A . Letter to the editor: Highly pathogenic influenza A (H5N1) viruses in farmed mink outbreak contain a disrupted second sialic acid binding site in neuraminidase, similar to human influenza A viruses[J]. Euro Surveill, 2023, 28 (7): 2300085. |
| 43 |
XU X , SUBBARAO , COX N J , et al. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong[J]. Virology, 1999, 261 (1): 15- 19.
doi: 10.1006/viro.1999.9820 |
| 44 | World Health Organization. Cumulative number of confirmed human cases for avian influenza A (H5N1) reported to WHO, 2003-2024, 12 December 2024[EB/OL]. [2025-01-21]. https://www.who.int/publications/m/item/cumulative-number-of-confirmed-human-cases-for-avian-influenza-a(h5n1)-reported-to-who-2003-2024-20-december-2024. |
| 45 | World Health Organization. Updated joint FAO/WHO/WOAH assessment of recent influenza A (H5N1) virus events in animals and people[EB/OL]. [2025-01-21]. https://www.who.int/publications/m/item/updated-joint-fao-who-woah-assessment-of-recent-influenza-a(h5n1)-virus-events-in-animals-and-people. |
| 46 |
TARENDEAU F , CREPIN T , GUILLIGAY D , et al. Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit[J]. PLoS Pathog, 2008, 4 (8): e1000136.
doi: 10.1371/journal.ppat.1000136 |
| 47 |
HOSSAIN M G , AKTER S , DHOLE P , et al. Analysis of the genetic diversity associated with the drug resistance and pathogenicity of influenza A virus isolated in Bangladesh from 2002 to 2019[J]. Front Microbiol, 2021, 12, 735305.
doi: 10.3389/fmicb.2021.735305 |
| 48 |
PULIT-PENALOZA J A , BROCK N , BELSER J A , et al. Highly pathogenic avian influenza A(H5N1) virus of clade 2.3.4.4b isolated from a human case in Chile causes fatal disease and transmits between co-housed ferrets[J]. Emerg Microbes Infect, 2024, 13 (1): 2332667.
doi: 10.1080/22221751.2024.2332667 |
| 49 |
NEUMANN G , NODA T , KAWAOKA Y . Emergence and pandemic potential of swine-origin H1N1 influenza virus[J]. Nature, 2009, 459 (7249): 931- 939.
doi: 10.1038/nature08157 |
| 50 | 中华人民共和国农业农村部. 疫情发布[EB/OL]. [2025-01-21]. http://www.xmsyj.moa.gov.cn/yqfb/. |
| Ministry of Agriculture and Rural Affairs of the People's Republic of China. The Animal epidemic information[EB/OL]. [2025-01-21]. http://www.xmsyj.moa.gov.cn/yqfb/. (in Chinese) | |
| 51 | 蒲娟, 刘金华. 动物流感病毒对人类健康的威胁[J]. 病毒学报, 2023, 39 (3): 877- 889. |
| PU J , LIU J H . Threats of animal influenza virus to human health[J]. Chinese Journal of Virology, 2023, 39 (3): 877- 889. | |
| 52 |
ZENG X Y , HE X W , MENG F , et al. Protective efficacy of an H5/H7 trivalent inactivated vaccine (H5-Re13, H5-Re14, and H7-Re4 strains) in chickens, ducks, and geese against newly detected H5N1, H5N6, H5N8, and H7N9 viruses[J]. J Integr Agric, 2022, 21 (7): 2086- 2094.
doi: 10.1016/S2095-3119(22)63904-2 |
| [1] | LIN Xinyi, JIANG Xinyu, SU Zinuo, WANG Yuling, RUAN Shiyu, HONG Hailong, WU Jiahao, BO Ruonan. Study on Preparation and the Mucosal Immune Adjuvant Activity of Ultra-Large Mesoporous Silica Nanoparticles Loading Polysaccharide from Atractylodes macrocephala Koidz [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2507-2519. |
| [2] | SHI Yuting, HAN Xinyu, ZHONG Muhui, LIN Yaozhong, LIU Tengfei, LI Yan, YIN Huifang, JIA Weixin. Establishment and Validation of the Reverse Genetics System for G57 Genotype H9N2 Subgenotype Avian Influenza Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1825-1833. |
| [3] | HUANG Cheng, YANG Zhiyuan, LIN Jian, CHENG Huimin, WANG Mi, MAO Huilin, WANG Guoliang, LIU Guiming, ZHAO Jicheng, LIU Yuehuan. Construction and Efficacy Evaluation of mRNA Vaccines against H9 Subtype Avian Influenza Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1843-1853. |
| [4] | GAO Zhiqiang, LAI Ping'an, SONG Yueqian, CHONG Yan, GUO Youran, BAI Zilong, GUO Huimin, WANG Lin, PU Jing, SHI Xiju, REN Tong, ZHAO Xiangpeng. Studies and Application of Multi-target Nucleic Acid Mass Spectrometry Detection Method for Avian Influenza/Newcastle Disease Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1386-1395. |
| [5] | Kangning ZHAO, Zhonglong YANG, Yi CHEN, Chuncheng ZHU, Yunfei GUO, Yuncong YIN, Tao QIN, Sujuan CHEN, Daxin PENG. Genetic Variation Analysis of Sixteen Novel H3N3 Subtype Avian Influenza Viruses [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4029-4040. |
| [6] | MAO Qiuyan, ZHOU Shuning, LIU Shuo, PENG Cheng, YIN Xin, ZHANG Yaxin, ZHOU Wanting, LI Jinping, HOU Guangyu, JIANG Wenming, SONG Houhui, LIU Hualei. Establishment and Application of Fluorescent Quantitative RT-PCR for Detection of H3 Subtype Avian Influenza Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1137-1146. |
| [7] | SU Wennan, LIU Jiaqi, ZHONG Jiacheng, CHEN Jidang, ZHU Wanjun, ZHANG Yishan, ZHANG Jipei. Complete Genome Re-sequence and Comparative Genomic Analysis of Avibacterium paragallinarum from Geese [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1208-1216. |
| [8] | YANG Zhiyi, WANG Xinkai, SHI Yuting, FU Siyuan, ZHANG Yuxin, CAO Chenfu, JIA Weixin. Establishment of Nucleic Acid Detection Methods for Avian Influenza H5 Subtype Based on CRISPR-Cas13a and RT-RAA [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3803-3811. |
| [9] | ZHOU Yong, LI Zhixin, LU Hongwei, SUN Yan, LI Tian, DU Fanshu, PU Juan. Surveillance and Outbreak Analysis of H5 and H7N9 Subtypes of Highly Pathogenic Avian Influenza in China [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3093-3106. |
| [10] | CUI Mingxian, WANG Xingbo, HUANG Yanming, BIAN Xiyi, FENG Mengke, YAN Yan, DONG Weiren, ZHOU Jiyong. Genetic Characterization and Evolution of Three Strains of H3N2 Avian Influenza Viruses [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 4116-4122. |
| [11] | LI Jingyun, LIAN Pengjing, BAI Yu, XI Liuqing, ZHANG Zihui, NIU Xiaofei, YANG Junqi, QIAO Jian. The Impact of H9N2 Subtype Avian Influenza Viral Infection on the Gut Flora in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(5): 1359-1368. |
| [12] | LI Li, TANG Guoyi, FENG Helong, XUE Yuhan, REN Zhu, WANG Guokang, JIA Miaomiao, SHANG Yu, LUO Qingping, SHAO Huabin, WEN Guoyuan. Evaluation of Immune Efficacy of H9 Subtype Avian Influenza Virus Inactivated Vaccine Based on Mosaic HA Sequence [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3569-3577. |
| [13] | ZHANG Shihong, WANG Shaolin. Research Progress on Antimicrobial Resistance of Clostridium perfringens of Animal Origins [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10): 2762-2771. |
| [14] | WANG Suchun, ZHONG Huanxiang, JIANG Nan, JIANG Lijian, PAN Zihao, SUN Fuliang, LIU Hualei, HUANG Baoxu, WANG Kaicheng. Establishment of the Quadruple Real-time Fluorescence RT-PCR for Detection of H5, H7 and H9 Subtypes Avian Influenza Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6): 1429-1437. |
| [15] | ZHAO Bingqian, LUO Chang, LIU Jianxin, LI Huizi, ZHANG Pengtao, YU Xianglong, LIU Boyang, NING Zhangyong. Inhibitory Effect of Forsythiae Fructus Aqueous Extracts on the Proliferation of Avian Influenza Virus and the Expression of Inflammation Factors in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6): 1466-1474. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||