

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (9): 4204-4214.doi: 10.11843/j.issn.0366-6964.2025.09.007
• Review • Previous Articles Next Articles
YI Huanming1,2(
), BAO Guosheng1,2, WAN Hui1,2, OU Jingyu1,2, HE Xiaolong1,2, REN Chunhuan1,2, CHEN Jiahong3, ZHANG Zijun1,2, WANG Qiangjun1,2,*(
)
Received:2024-09-09
Online:2025-09-23
Published:2025-09-30
Contact:
WANG Qiangjun
E-mail:1342877790@qq.com;wangqiangjun@ahau.edu.cn
CLC Number:
YI Huanming, BAO Guosheng, WAN Hui, OU Jingyu, HE Xiaolong, REN Chunhuan, CHEN Jiahong, ZHANG Zijun, WANG Qiangjun. Research Progress of Heat Stress Affect Digestive Tract Barrier Function of Ruminants by Interfering with Biological Clock[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4204-4214.
Table 1
Amelioration of heat stress-induced intestinal barrier damage through modulation of circadian rhythms"
| 肠道损伤情况 Intestinal damage | 采取措施 Measure | 改善机理 Improvement mechanism | 参考文献 References |
| 持续高温扰乱体温的节律性波动,影响昼夜节律导致肠道通透性增加 Persistent high temperatures disrupt the rhythmic fluctuations of body temperature, affecting the circadian rhythm and leading to increased intestinal permeability | 通过“喷淋+风扇”降温系统对动物体进行降温,其中,喷淋流量为1.3 L·min-1可以有效降温,此平均粒径为0.80~1.00 mm的液滴最能平衡冷却效果和耗水量 | 通过降低动物体温,恢复其节律性,继而缓解生物钟系统紊乱,恢复对肠道紧密连接蛋白的调控,缓解肠道损伤 | 石富磊等[ |
| 过量的ROS会导致细胞膜的流动性和渗透性改变,并最终导致细胞结构和功能的变化,破坏肠道屏障的完整性和功能 Excessive ROS can alter the fluidity and permeability of cell membranes, ultimately leading to changes in cell structure and function, compromising the integrity and functionality of the intestinal barrier | ROS达到每日最高水平时,在日粮中添加甘氨酸等抗氧化剂 | 甘氨酸通过抑制NF-κB激活来抑制ROS形成,增加了血清SOD、GPX和T-AOC的活性,并降低了血清H2O2和MDA的水平 | Deng等[ |
| 肠道微生物节律变化紊乱,有害菌群如沙门菌和大肠杆菌相对丰度增多,患溃疡性结肠炎或克罗恩病 Disruption of the circadian rhythm in gut microbiota leads to an increase in the relative abundance of harmful bacteria such as Salmonella and Escherichia coli, increasing the risk of developing ulcerative colitis or Crohn’s disease | 通过补充益生菌,如SCFA产生相关的丁酸梭菌等 | 丁酸梭菌可以增加双歧杆菌和乳酸菌等有益菌的丰度,抑制致病菌,修复肠道微生物节律,并且还可以增加SCFAs的含量,维护肠道通透性 | Dou等[ |
| HSF1的异常激活会促进炎症反应的加剧,干扰正常的细胞周期控制,导致肠道屏障功能的破坏,甚至可能引发癌变 Aberrant activation of HSF1 promotes the exacerbation of inflammatory responses, interferes with normal cell cycle control, impairs intestinal barrier function, and may even trigger carcinogenesis | 对动物注射DTHIB等HSF1阻断剂 | DTHIB与HSF1 DBD直接结合,抑制HSF1的转录活性,并选择性地刺激核HSF1的降解,降低核HSF1丰度,恢复节律功能 | Dong等[ |
| 1 |
NICLOU A M , CHEN K Y , REDMAN L M . The juxtaposition between heat stress from global warming and human health[J]. J Appl Physiol (1985), 2024, 136 (6): 1346- 1347.
doi: 10.1152/japplphysiol.00281.2024 |
| 2 |
MICHAL H . From molecular and cellular to integrative heat defense during exposure to chronic heat[J]. Comp Biochem Physiol A Mol Integr Physiol, 2002, 131 (3): 475- 483.
doi: 10.1016/S1095-6433(01)00500-1 |
| 3 |
FRANZISKA K , ULRIKE T , ELKE A , et al. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine[J]. Proc Natl Acad Sci U S A, 2019, 116 (21): 10333- 10338.
doi: 10.1073/pnas.1820130116 |
| 4 |
WHEELOCK J B , RHOADS R P , VANBAALE M J , et al. Effects of heat stress on energetic metabolism in lactating Holstein cows[J]. J Dairy Sci, 2010, 93 (2): 644- 655.
doi: 10.3168/jds.2009-2295 |
| 5 |
NEGRÓN-PÉREZ V M , FAUSNACHT D W , RHOADS M L . Invited review: Management strategies capable of improving the reproductive performance of heat-stressed dairy cattle[J]. J Dairy Sci, 2019, 102 (12): 10695- 10710.
doi: 10.3168/jds.2019-16718 |
| 6 |
VITALI A , SEGNALINI M , BERTOCCHI L , et al. Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows[J]. J Dairy Sci, 2009, 92 (8): 3781- 3790.
doi: 10.3168/jds.2009-2127 |
| 7 |
DAVID O K , SIMON K W . Fertility in South Australian commercial Merino flocks: Relationships between reproductive traits and environmental cues[J]. Theriogenology, 2005, 63 (9): 2416- 2433.
doi: 10.1016/j.theriogenology.2004.09.052 |
| 8 |
VAN WETTERE W H E J , CULLEY S , SWINBOURNE A M F , et al. Heat stress from current and predicted increases in temperature impairs lambing rates and birth weights in the Australian sheep flock[J]. Nature Food, 2024, 5 (3): 206- 210.
doi: 10.1038/s43016-024-00935-w |
| 9 |
HABIBU B , YAQUB L S , DZENDA T , et al. Sensitivity, impact and consequences of changes in respiratory rate during thermoregulation in livestock-A review[J]. Annals of Animal Science, 2019, 19, 291- 304.
doi: 10.2478/aoas-2019-0002 |
| 10 |
YADAV R , JARYAL A K , MALLICK H N . Participation of preoptic area TRPV4 ion channel in regulation of body temperature[J]. J Therm Biol, 2017, 66, 81- 86.
doi: 10.1016/j.jtherbio.2017.04.001 |
| 11 |
ATTIA Y A , AL-HARTHI M A , ELNAGGAR A S . Productive, physiological and immunological responses of two broiler strains fed different dietary regimens and exposed to heat stress[J]. Italian Journal of Animal Science, 2018, 17 (3): 686- 697.
doi: 10.1080/1828051X.2017.1416961 |
| 12 |
BUHR E D , YOO S H , TAKAHASHI J S . Temperature as a universal resetting cue for mammalian circadian oscillators[J]. Science, 2010, 330 (6002): 379- 385.
doi: 10.1126/science.1195262 |
| 13 |
TAKAMATSU N , SHIRAHATA Y , SEKI K , et al. Heat shock factor 1 induces a short burst of transcription of the clock gene Per2 during interbout arousal in mammalian hibernation[J]. J Biol Chem, 2023, 299 (4): 104576.
doi: 10.1016/j.jbc.2023.104576 |
| 14 |
LIU X L , DUAN Z , YU M , et al. Epigenetic control of circadian clocks by environmental signals[J]. Trends Cell Biol, 2024, 34 (12): 992- 1006.
doi: 10.1016/j.tcb.2024.02.005 |
| 15 |
GUTIERREZ LOPEZ D E , LASHINGER L M , WEINSTOCK G M , et al. Circadian rhythms and the gut microbiome synchronize the host's metabolic response to diet[J]. Cell Metab, 2021, 33 (5): 873- 887.
doi: 10.1016/j.cmet.2021.03.015 |
| 16 |
CHOI H , RAO M C , CHANG E B . Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism[J]. Nat Rev Gastroenterol Hepatol, 2021, 18 (10): 679- 689.
doi: 10.1038/s41575-021-00452-2 |
| 17 | 张海森, 李超, 李雅婷, 等. 生物钟与肠道菌群调控哺乳动物能量代谢研究进展[J]. 生理学报, 2022, 74(3): 443-460. |
| ZHANG H S, LI C, LI Y T, et al. Research progress on the regulation of mammalian energy metabolism by the circadian clock system and gut microbiota. [J]. Acta Physiologica Sinica, June 25, 2022, 74(3): 443-460. (in Chinese) | |
| 18 |
WANG Q J , GUO Y , ZHANG K H , et al. Night-restricted feeding improves gut health by synchronizing microbe-driven serotonin rhythm and eating activity-driven body temperature oscillations in growing rabbits[J]. Front Cell Infect Microbiol, 2021, 11, 771088.
doi: 10.3389/fcimb.2021.771088 |
| 19 |
SEGERS A , DEPOORTERE I . Circadian clocks in the digestive system[J]. Nat Rev Gastroenterol Hepatol, 2021, 18 (4): 239- 251.
doi: 10.1038/s41575-020-00401-5 |
| 20 |
THAISS C A , ZEEVI D , LEVY M , et al. Transkingdom control of microbiota diurnal oscillations rromotes metabolic homeostasis[J]. Cell, 2014, 159 (3): 514- 529.
doi: 10.1016/j.cell.2014.09.048 |
| 21 |
TUGANBAEV T , MOR U , BASHIARDES S , et al. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis[J]. Cell, 2020, 182 (6): 1441- 1459.
doi: 10.1016/j.cell.2020.08.027 |
| 22 |
PAGEL R , BÄR F , SCHRÖDER T , et al. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine[J]. Faseb j, 2017, 31 (11): 4707- 4719.
doi: 10.1096/fj.201700141RR |
| 23 |
MOHAWK J A , GREEN C B , TAKAHASHI J S . Central and peripheral circadian clocks in mammals[J]. Annu Rev Neurosci, 2012, 35, 445- 462.
doi: 10.1146/annurev-neuro-060909-153128 |
| 24 |
HURD M W , RALPH M R . The significance of circadian organization for longevity in the golden hamster[J]. J Biol Rhythms, 1998, 13 (5): 430- 436.
doi: 10.1177/074873098129000255 |
| 25 |
GOLOMBEK D A , ROSENSTEIN R E . Physiology of circadian entrainment[J]. Physiol Rev, 2010, 90 (3): 1063- 1102.
doi: 10.1152/physrev.00009.2009 |
| 26 |
REPPERT S M , WEAVER D R . Molecular analysis of mammalian circadian rhythms[J]. Annu Rev Physiol, 2001, 63, 647- 676.
doi: 10.1146/annurev.physiol.63.1.647 |
| 27 |
PATKE A , YOUNG M W , AXELROD S . Molecular mechanisms and physiological importance of circadian rhythms[J]. Nat Rev Mol Cell Biol, 2020, 21 (2): 67- 84.
doi: 10.1038/s41580-019-0179-2 |
| 28 |
DEBRUYNE J P , WEAVER D R , REPPERT S M . CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock[J]. Nat Neurosci, 2007, 10 (5): 543- 545.
doi: 10.1038/nn1884 |
| 29 | 杨王浩, 王博, 刘薇, 等. 奶牛生物钟基因CLOCK的真核表达载体构建、生物信息学分析及其组织表达谱[J]. 畜牧与兽医, 2023, 55 (6): 49- 58. |
| YANG W H , WANG B , LIU W , et al. Eukaryotic expression vector construction, bioinformatics analysis and tissue expression profile of the dairy cow CLOCK gene[J]. Animal Husbandry & Veterinary Medicine, 2023, 55 (6): 49- 58. | |
| 30 | 李丹, 张海森, 王逸群, 等. 奶牛CRY1基因真核表达载体构建、生物信息学分析及组织表达谱研究[J]. 中国畜牧兽医, 2023, 50(3): 870-881. |
| LI D , ZHANG H S , WANG Y Q , et al. Eukaryotic expression vector construction, bioinformatics and tissue expression profiles analysis of CRY1 gene in dairy cows[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (3): 870- 881. | |
| 31 | 刘薇, 王博, 王逢博, 等. 奶牛RORα基因的生物信息学分析与组织表达谱检测[J]. 基因组学与应用生物学, 2023, 42 (1): 13- 24. |
| LIU W, WANG B, WANG F B, et al., 2023. Bioinformatics analysis and tissue expression profiles detection of RORa gene in Bos taurus[J]. Genomics and Applied Biology, 2023, 42(1): 13-24. (in Chinese) | |
| 32 | 徐皓东, 王逸群, 刘祖培, 等. 奶牛生物钟基因BMAL1真核表达载体的构建及生物信息学分析[J]. 中国畜牧杂志, 2023, 59 (4): 161- 167. |
| XU H D , WANG Y Q , LIU Z P , et al. Construction and bioinformatics of eukaryotic expression vector of bovine body clock gene BMAL1[J]. Chinese Journal of Animal Science, 2023, 59 (4): 161- 167. | |
| 33 |
王逸群, 刘祖培, 李雅婷, 等. 奶牛NR1D1基因的真核表达载体构建、表达谱及其在卵巢组织的定位[J]. 畜牧兽医学报, 2023, 54 (1): 133- 145.
doi: 10.11843/j.issn.0366-6964.2023.01.013 |
|
WANG Y Q , LIU Z P , LI Y T , et al. The dairy cow NR1D1 gene's eukaryotic expression vector construction, expression profile and its ovarian localization[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (1): 133- 145.
doi: 10.11843/j.issn.0366-6964.2023.01.013 |
|
| 34 | 马白荣, 张海森, 高登科, 等. 山羊隐花色素2基因真核表达载体的构建及生物信息学分析[J]. 中国兽医杂志, 2022, 58 (5): 1- 9. |
| MA B R , ZHANG H S , GAO D K , et al. Construction of an eukaryotic expression vector in goat cryptochrome 2 gene and its bioinformatics analysis[J]. Chinese Journal of Veterinary Medicine, 2022, 58 (5): 1- 9. | |
| 35 |
高登科, 赵泓淙, 董浩, 等. 山羊RORα基因的克隆、表达载体构建及功能分析[J]. 畜牧兽医学报, 2022, 53 (6): 1779- 1794.
doi: 10.11843/j.issn.0366-6964.2022.06.012 |
|
GAO D K , ZHAO H C , DONG H , et al. The cloning, expression vector construction and function analysis of goat RORa. gene[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (6): 1779- 1794.
doi: 10.11843/j.issn.0366-6964.2022.06.012 |
|
| 36 | 王逸群, 高登科, 赵泓淙, 等. 山羊NR1D1基因真核表达载体的构建及生物信息学分析[J]. 中国畜牧杂志, 2022, 58 (10): 215- 222. |
| WANG Y Q , GAO D K , ZHAO H C , et al. Construction of a eukaryotic expression vector of goat NR1D1 gene and its bioinformatics analysis[J]. Chinese Journal of Animal Science, 2022, 58 (10): 215- 222. | |
| 37 | 赵泓淙, 高登科, 江海圳, 等. 山羊生物钟基因CLOCK真核表达载体的构建和生物信息学分析[J]. 中国畜牧兽医, 2021, 48 (12): 4327- 4338. |
| ZHAO H C , GAO D K , JIANG H Z , et al. Construction of eukaryotic expression vector and bioinformatics analysisof circadian CLOCK gene in goats[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48 (12): 4327- 4338. | |
| 38 |
GAO D , ZHAO H , DONG H , et al. Transcriptional feedback loops in the caprine circadian clock system[J]. Front Vet Sci, 2022, 9, 814562.
doi: 10.3389/fvets.2022.814562 |
| 39 |
DARDENTE H , FUSTIN J M , HAZLERIGG D G . Transcriptional feedback loops in the ovine circadian clock[J]. Comp Biochem Physiol A Mol Integr Physiol, 2009, 153 (4): 391- 398.
doi: 10.1016/j.cbpa.2009.03.016 |
| 40 |
KYOKO O O , KONO H , ISHIMARU K , et al. Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis[J]. PLoS One, 2014, 9 (5): e98016.
doi: 10.1371/journal.pone.0098016 |
| 41 |
ZHANG Z , LI W , HAN X , et al. Circadian rhythm disruption-mediated downregulation of Bmal1 exacerbates DSS-induced colitis by impairing intestinal barrier[J]. Front Immunol, 2024, 15, 1402395.
doi: 10.3389/fimmu.2024.1402395 |
| 42 | TIAN Y , ZHANG D . Biological clock and inflammatory bowel disease review: from the standpoint of the intestinal barrier[J]. Gastroenterol Res Pract, 2022, 2939921. |
| 43 |
MARCINKEVICIUS E V , SHIRASU-HIZA M M . Message in a biota: gut microbes signal to the circadian clock[J]. Cell Host Microbe, 2015, 17 (5): 541- 543.
doi: 10.1016/j.chom.2015.04.013 |
| 44 |
SCHEIERMANN C , GIBBS J , INCE L , et al. Clocking in to immunity[J]. Nat Rev Immuno, 2018, 18 (7): 423- 437.
doi: 10.1038/s41577-018-0008-4 |
| 45 | 任洁, 罗彦英. 肠道微生物与肠道疾病[J]. 中国中西医结合外科杂志, 2015, 21 (6): 632- 635. |
| REN J , LUO Y Y . Intestinal microorganisms and intestinal diseases[J]. Chinese Journal of Surgery of Integrated Traditional and Western Medicine, 2015, 21 (6): 632- 635. | |
| 46 |
XIAO Y , ZHAO J , ZHANG H , et al. Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential[J]. Clin Nutr, 2020, 39 (5): 1315- 1323.
doi: 10.1016/j.clnu.2019.05.014 |
| 47 |
SONG J , XIAO K , KE Y L , et al. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress[J]. Poult Sci, 2014, 93 (3): 581- 588.
doi: 10.3382/ps.2013-03455 |
| 48 |
GUO P , WANG W , XIANG Q , et al. Engineered probiotic ameliorates ulcerative colitis by restoring gut microbiota and redox homeostasis[J]. Cell Host Microbe, 2024, 32 (9): 1502- 1518.
doi: 10.1016/j.chom.2024.07.028 |
| 49 |
SHI X , MA T , SAKANDAR H A , et al. Gut microbiome and aging nexus and underlying mechanism[J]. Appl Microbiol Biotechnol, 2022, 106 (17): 5349- 5358.
doi: 10.1007/s00253-022-12089-5 |
| 50 |
LOTTI S , DINU M , COLOMBINI B , et al. Circadian rhythms, gut microbiota, and diet: Possible implications for health[J]. Nutr Metab Cardiovasc Dis, 2023, 33 (8): 1490- 1500.
doi: 10.1016/j.numecd.2023.05.009 |
| 51 | 潘文兰, 李红霞, 蔡梦宇, 等. 热应激对肠道及认知功能的影响[J]. 环境与职业医学, 2023, 40 (11): 1341-1346, 1353. |
| PAN W L , LI H X , CAI M Y , et al. Effects of heat stress on intestinal tract and cognitive function[J]. Journal of Environmental and Occupational Medicine, 2023, 40 (11): 1341-1346, 1353. | |
| 52 | 陆安, 李焕荣, 刘凤华. 热应激对大鼠肠道细菌移位及肠黏膜免疫屏障功能的研究[C]. 中国畜牧兽医学会2014年家畜环境卫生学分会学术年会, 2014: 14. |
| LU A, LI H R, LIU F H. The effect of heat stress on intestinal bacterial translocation and Intestinal mucosal immune in rats[C]. Proceedings of the 2014 Annual Meeting of the Livestock Environmental Sanitation Branch of the Chinese Association of Animal Husbandry and Veterinary Medicine, 2014: 14. (in Chinese) | |
| 53 | LI Y , LI J , ZHANG N , et al. Diversity analysis of the intestinal microbial flora of laying hens under heat stress[J]. Acta Ecologica Sinica, 2015, 35 (10): 5846. |
| 54 | 刘春峰, 袁壮. 内脏缺血缺氧代谢障碍在SIRS和MODS中的作用[J]. 小儿急救医学, 2000 (4): 180- 182. |
| LIU C F , YUAN Z . The role of splanchnic ischemia-hypoxia in SIRS and MODS[J]. Chinese Pediatric Emergency Medicine, 2000 (4): 180- 182. | |
| 55 | 李磊, 王曼, 许硕贵. 热射病肠道损伤机制及防治研究进展[J]. 华南国防医学杂志, 2020, 34 (12): 905- 910. |
| LI L , WANG M , XU S G . Advances in the study of intestinal injury mechanism and prevention of heat stroke[J]. Military Medicine of Joint Logistics, 2020, 34 (12): 905- 910. | |
| 56 |
BHATTACHARYYA A , CHATTOPADHYAY R , MITRA S , et al. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases[J]. Physiol Rev, 2014, 94 (2): 329- 354.
doi: 10.1152/physrev.00040.2012 |
| 57 |
YU J , LIU F , YIN P , et al. Involvement of oxidative stress and mitogen-activated protein kinase signaling pathways in heat stress-induced injury in the rat small intestine[J]. Stress, 2013, 16 (1): 99- 113.
doi: 10.3109/10253890.2012.680526 |
| 58 |
OLIVER S R , PHILLIPS N A , NOVOSAD V L , et al. Hyperthermia induces injury to the intestinal mucosa in the mouse: evidence for an oxidative stress mechanism[J]. Am J Physiol Regul Integr Comp Physiol, 2012, 302 (7): R845- R853.
doi: 10.1152/ajpregu.00595.2011 |
| 59 | 严啊妮, 沈奔, 王洪荣. 热应激对反刍动物生产性能、瘤胃生理代谢和机体免疫功能的影响[J]. 中国饲料, 2022 (21): 14- 17. |
| YAN A N , SHEN B , WANG H R . Effects of heat stress on performance, rumen physiological metabolism and immune function of ruminants[J]. China Feed, 2022 (21): 14- 17. | |
| 60 |
MCMANUS C M , FARIA D A , LUCCI C M , et al. Heat stress effects on sheep: Are hair sheep more heat resistant?[J]. Theriogenology, 2020, 155, 157- 167.
doi: 10.1016/j.theriogenology.2020.05.047 |
| 61 |
GILL R , TSUNG A , BILLIAR T . Linking oxidative stress to inflammation: Toll-like receptors[J]. Free Radic Biol Med, 2010, 48 (9): 1121- 1132.
doi: 10.1016/j.freeradbiomed.2010.01.006 |
| 62 |
DE LA FUENTE M , MIQUEL J . An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging[J]. Curr Pharm Des, 2009, 15 (26): 3003- 3026.
doi: 10.2174/138161209789058110 |
| 63 | 孟钰. 温度对丽斑麻蜥和黑龙江草蜥生理活动和肠道菌群的影响[D]. 哈尔滨: 哈尔滨师范大学, 2022. |
| MENG Y. Effects of temperature on physiological activity and intestinal microflora of eremias argus and takydromus amurensis[D]. Harbin: Harbin Normal University, 2022. (in Chinese) | |
| 64 |
BARNA J , CSERMELY P , VELLAI T . Roles of heat shock factor 1 beyond the heat shock response[J]. Cell Mol Life Sci, 2018, 75 (16): 2897- 2916.
doi: 10.1007/s00018-018-2836-6 |
| 65 |
TAMARU T , IKEDA M . Circadian adaptation to cell injury stresses: a crucial interplay of BMAL1 and HSF1[J]. J Physiol Sci, 2016, 66 (4): 303- 306.
doi: 10.1007/s12576-016-0436-5 |
| 66 |
TAHARA Y , YOKOTA A , SHIRAISHI T , et al. In vitro and in vivo phase changes of the mouse circadian clock by oxidative stress[J]. J Circadian Rhythms, 2016, 14 (1): 4.
doi: 10.5334/jcr.136 |
| 67 |
MEZHNINA V , EBEIGBE O P , POE A , et al. Circadian control of mitochondria in reactive oxygen species homeostasis[J]. Antioxid Redox Signal, 2022, 37 (10-12): 647- 663.
doi: 10.1089/ars.2021.0274 |
| 68 |
RIJO-FERREIRA F , TAKAHASHI J S . Genomics of circadian rhythms in health and disease[J]. Genome Med, 2019, 11 (1): 82.
doi: 10.1186/s13073-019-0704-0 |
| 69 |
BISHEHSARI F , VOIGT R M , KESHAVARZIAN A . Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer[J]. Nat Rev Endocrinol, 2020, 16 (12): 731- 739.
doi: 10.1038/s41574-020-00427-4 |
| 70 |
TEICHMAN E M , O'RIORDAN K J , GAHAN C G M , et al. When rhythms meet the blues: circadian interactions with the microbiota-gut-brain axis[J]. Cell Metab, 2020, 31 (3): 448- 471.
doi: 10.1016/j.cmet.2020.02.008 |
| 71 |
PAULOSE J K , WRIGHT J M , PATEL A G , et al. Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity[J]. PLoS One, 2016, 11 (1): e0146643.
doi: 10.1371/journal.pone.0146643 |
| 72 |
SZŐKE H , KOVÁCS Z , BÓKKON I , et al. Gut dysbiosis and serotonin: intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain[J]. Rev Neurosci, 2020, 31 (4): 415- 425.
doi: 10.1515/revneuro-2019-0095 |
| 73 |
KACZMAREK J L , THOMPSON S V , HOLSCHER H D . Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health[J]. Nutr Rev, 2017, 75 (9): 673- 682.
doi: 10.1093/nutrit/nux036 |
| 74 | 刘帅. 热应激对生长猪肠道健康和HPA轴的影响及机制[D]. 武汉: 华中农业大学, 2022. |
| LIU S. Effects of heat stress on intestinal health and hpa axis in growing pigs. [D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese) | |
| 75 |
RADA-IGLESIAS A , ENROTH S , AMEUR A , et al. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes[J]. Genome Res, 2007, 17 (6): 708- 719.
doi: 10.1101/gr.5540007 |
| 76 |
FRAZIER K , CHANG E B . Intersection of the gut microbiome and circadian rhythms in metabolism[J]. Trends Endocrinol Metab, 2020, 31 (1): 25- 36.
doi: 10.1016/j.tem.2019.08.013 |
| 77 | YANG G , ZHOU X , CHEN S , et al. Effects of heat stress and lipopolysaccharides on gene expression in chicken immune cells[J]. Animals (Basel), 2024, 14 (4): 542. |
| 78 |
KIRSCH S , THIJSSEN S , ALARCON SALVADOR S , et al. T-cell numbers and antigen-specific T-cell function follow different circadian rhythms[J]. J Clin Immunol, 2012, 32 (6): 1381- 1389.
doi: 10.1007/s10875-012-9730-z |
| 79 |
MUKHERJI A , KOBⅡTA A , YE T , et al. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs[J]. Cell, 2013, 153 (4): 812- 827.
doi: 10.1016/j.cell.2013.04.020 |
| 80 |
LIU Y , WANG Z , XIE W , et al. Oxidative stress regulates mitogen-activated protein kinases and c-Jun activation involved in heat stress and lipopolysaccharide-induced intestinal epithelial cell apoptosis[J]. Mol Med Rep, 2017, 16 (3): 2579- 2587.
doi: 10.3892/mmr.2017.6859 |
| 81 |
YANO J M , YU K , DONALDSON G P , et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161 (2): 264- 276.
doi: 10.1016/j.cell.2015.02.047 |
| 82 |
LI H , CHEN H , ZHANG S , et al. Taurine alleviates heat stress-induced mammary inflammation and impairment of mammary epithelial integrity via the ERK1/2-MLCK signaling pathway[J]. J Therm Biol, 2023, 116, 103587.
doi: 10.1016/j.jtherbio.2023.103587 |
| 83 |
AOKI N , WATANABE H , OKADA K , et al. Involvement of 5-HT3 and 5-HT4 receptors in the regulation of circadian clock gene expression in mouse small intestine[J]. J Pharmacol Sci, 2014, 124 (2): 267- 275.
doi: 10.1254/jphs.13253FP |
| 84 | KU K , PARK I , KIM D , et al. Gut microbial metabolites induce changes in circadian oscillation of clock gene expression in the mouse embryonic fibroblasts[J]. Mol Cells, 2020, 43 (3): 276- 285. |
| 85 | 杜肖肖, 邓铭, 孙宝丽, 等. 奶牛热应激调控措施研究进展[J]. 中国奶牛, 2024 (5): 1- 7. |
| DU X X , DENG M , SUN B L , et al. Research progress on measures to relieve heat stress in dairy cows[J]. China Dairy Cattle, 2024 (5): 1- 7. | |
| 86 | 石富磊, 赵继政, 庄蒲宁, 等. 缓解奶牛热应激喷淋降温控制条件和节水措施研究进展[J]. 黑龙江畜牧兽医, 2022 (9): 27- 33. |
| SHI F L , ZHAO J Z , ZHUANG P N , et al. Review on cooling control conditions and water-saving measures of spraying to relieve heat stress in dairy cows[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022 (09): 27- 33. | |
| 87 |
LI G , WANG Z , SHI Z , et al. Analysing the motions of spray droplets on a cow's surface to relieve heat stress[J]. Sci Rep, 2019, 9 (1): 2146.
doi: 10.1038/s41598-018-38354-0 |
| 88 |
DENG C , ZHENG J , ZHOU H , et al. Dietary glycine supplementation prevents heat stress-induced impairment of antioxidant status and intestinal barrier function in broilers[J]. Poult Sci, 2023, 102 (3): 102408.
doi: 10.1016/j.psj.2022.102408 |
| 89 |
DOU L , LIU C , CHEN X , et al. Supplemental Clostridium butyricum modulates skeletal muscle development and meat quality by shaping the gut microbiota of lambs[J]. Meat Sci, 2023, 204, 109235.
doi: 10.1016/j.meatsci.2023.109235 |
| 90 |
DONG B , JAEGER A M , HUGHES P F , et al. Targeting therapy-resistant prostate cancer via a direct inhibitor of the human heat shock transcription factor 1[J]. Sci Transl Med, 2020, 12 (574): eabb5647.
doi: 10.1126/scitranslmed.abb5647 |
| [1] | LUO Jia, PU Qiang, CHAI Jie, CHEN Li, WANG Jinyong. Biological Effects and Genetic Mechanisms of Intrauterine Heat Stress in Swine [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2004-2014. |
| [2] | LI Xiaowei, TIAN Wei, LIU Yuan, LI Huixia. Study on the Difference of m6A Methylation Modification in Ovarian Granulosa Cells of Hu Sheep under Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1712-1721. |
| [3] | WANG Xinxin, LIU Xiaoying, WANG Yi, WANG Fang, ZHAO Han, DU Zhiqiang, YANG Caixia. Acute Heat Stress Affects the Functions of Porcine Sertoli Cells via Decreasing Taurine Level [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1779-1790. |
| [4] | LIANG Hui, ZHAO Jing, WANG Yanya, LONG Runze, LIU Xuyang, WU Yingjie, LIU Ning, QIN Yinghe. Effects of Dietary Chlorogenic Acid on Reproductive Performance of Female Rabbits and Growth of Suckling Rabbits under Heat Stress Conditions [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 755-764. |
| [5] | Yongjie WU, Yinghuan XU, Tengfei LIU, Lin MA, Hong CHEN, Yongping XU. Effect of Scrotal Hyperthermia on Structure and Function of Blood-testis Barrier in Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2973-2982. |
| [6] | Xiaoyi FENG, Peipei ZHANG, Hang ZHANG, Haisheng HAO, Weihua DU, Huabin ZHU, Kai CUI, Xueming ZHAO. Effects of Heat Stress on Epigenetic Modifications and Developmental Competence of Bovine Oocytes and Their Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2460-2473. |
| [7] | Hang ZHANG, Peipei ZHANG, Baigao YANG, Xiaoyi FENG, Yifan NIU, Zhou YU, Jianhua CAO, Pengcheng WAN, Xueming ZHAO. Combination of IGF1, CoQ10 and MT Alleviated the Effects of Heat Stress on Bovine IVF Blastocysts [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2474-2485. |
| [8] | Ji WANG, Xinyan ZHOU, Fangrui GUO, Qiurong XU, Dongyi WU, Yan MAO, Zhihang YUAN, Jin'e YI, Lixin WEN, Jing WU. Viola yedoensis Makino Improves the Growth Performance, Meat Quality, and Gut Microbiota of Broilers Exposed to Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2761-2774. |
| [9] | WANG Xiao, ZHANG Hao, LUAN Qingjiang, LI Hui, YANG Ding, WANG Tingyue, TIAN Jing, ZHAO Meng, CHEN Lu, TIAN Rugang. A Comprehensive Review of the Impact of Cold and Heat Stress on the Physiological Parameters and Gene Expression in Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 894-904. |
| [10] | HUO Yuannan, QIU Meijia, ZHANG Jiaojiao, YANG Weirong, WANG Xianzhong. Arginine and Its Metabolites Attenuate Heat Stress-induced Apoptosis of Immature Boar Sertoli Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 587-597. |
| [11] | Yongqing LIU, Gang ZHANG, Yanling XIONG, Zhongxin SUN, Fan GAO, Ting LIU, Hui LI. Effects of Heat Stress on Duodenal Mucosal Structure, HIF-1 and Its Related Protein Expression in Congjiang Xiang Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4690-4699. |
| [12] | XIAO Yimei, WANG Shengnan, XU Yuewen, HE Xiaolin, YIN Fuquan. Research on the Influence of Heat Stress on Male Reproduction [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 11-21. |
| [13] | ZHANG Hang, YANG Baigao, XU Xi, FENG Xiaoyi, DU Weihua, HAO Haisheng, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Research Progress on the Mechanism of Heat Stress Affecting the Development of Dairy Cow Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2692-2700. |
| [14] | WANG Zixuan, WANG Qiao, ZHANG Jin, Astrid Lissette Barreto Sánchez, ZHENG Maiqing, LI Qinghe, CUI Huanxian, AN Bingxing, ZHAO Guiping, WEN Jie, LI Hegang. Transcriptome Based Screening of Functional Genes Related to Heat Stress Resistance in Beijing You Chickens and Guangming Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1905-1914. |
| [15] | FENG Xiaoyi, YANG Baigao, HAO Haisheng, DU Weihua, ZHU Huabin, CUI Kai, ZHAO Xueming. Mechanism and Solution of Heat Stress Induced Embryo Quality Decline in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 868-876. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||