Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (4): 1632-1647.doi: 10.11843/j.issn.0366-6964.2025.04.014
• Review • Previous Articles Next Articles
WU Junjie(), Lü Shiming, LONG Xiaoxia, WANG Zhong, WANG Liqi*(
)
Received:
2024-04-28
Online:
2025-04-23
Published:
2025-04-28
Contact:
WANG Liqi
E-mail:2087143832@qq.com;wangliqi86@126.com
CLC Number:
WU Junjie, Lü Shiming, LONG Xiaoxia, WANG Zhong, WANG Liqi. Research Progress on the Antibacterial Effects and Mechanisms of Traditional Chinese Medicine and Active Ingredients against Drug-resistant Bacteria[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1632-1647.
Table 1
Traditional Chinese medicine (TCM) and active ingredients acting on antimicrobial-resistant plasmids"
序号 No. | 中药 TCM | 耐药菌或动物 Drug resistant bacteria or animals | 对耐药菌的作用 The effect on drug-resistant bacteria | 作用机制 Mechanism of action | 参考文献 References |
1 | 黄连素 | 耐碳青霉烯类肺炎克雷伯菌 | 黄连素MIC为(1.38±0.72) mg·mL-1;作用24、48、72 h的质粒消除率分别为0, 3.1% 和4.7% | 消除R质粒 | 李永伟等[ |
2 | 金银花水煎剂 | 耐碳青霉烯类药物产金属酶铜绿假单胞菌7珠 | 金银花MIC为321.4 mg·mL-1;作用24、48、72 h的质粒消除率分别为0、0.71% 和0.62% | 消除R质粒 | 刘心伟等[ |
3 | 黄岑苷、姜黄素、小檗碱、芦荟大黄素 | 携带多重耐药基因cfr的Incx4型质粒psD11的大肠杆菌 | 小檗碱、黄岑苷、芦荟大黄素MIC均为1 280 mg·mL-1,姜黄素MIC>160 mg·mL-1;1/2、1/4MIC小檗碱和黄岑苷质粒消除率分别为25.46%、23.15%和14.66%、12.75%;1/2MIC的小檗碱和黄岑苷处理组的质粒稳定性下降率分别达49.33%和51.28% | 消除Incx4型耐药质粒,影响其遗传稳定性,破坏细胞膜和细胞壁 | 陈璐等[ |
4 | 苜蓿油(乙醚提取) | 耐万古霉素的屎肠球菌 | 苜蓿油MIC为32~64 μg·mL-1 | 抑制vanA/B基因和携带Tn1546转座子的质粒的接合转移 | Ahmad等[ |
5 | 双氢青蒿素(DHA) | 携带pIncI2-mcr-1质粒、pIncX4-mcr-1质粒、blaNDM-5-IncX3质粒、pIncX3-bla NDM-5和tet(X4)-IncX1质粒的大肠杆菌,小鼠 | 对携带pIncI2-mcr-1、pIncX4-mcr-1质粒的MIC为4 μg·mL-1;10和200 μg·mL-1的DHA使pIncI2-mcr-1的接合转移频率分别降低4倍和180倍;同时使pInX4-mcr-1的接合转移频率分别降低6倍和160倍;200 μg·mL-1的DHA使pIncX3-bla NDM-5的接合转移频率降低2.7倍;使小鼠体内pIncI2-mcr-1的接合转移频率降低1倍 | 使ΔpH下降,ΔΨ增加,破坏质子动力,降低ATP含量;抑制接合转移相关基因的表达;从而抑制pIncI2-mcr-1质粒的接合转移 | Wang等[ |
Table 2
Traditional Chinese medicine and active ingredients acting on the efflux system of antimicrobial-resistant bacteria"
序号 No. | 中药 TCM | 耐药菌 Drug resistant bacteria | 对耐药菌的作用 The effect on drug-resistant bacteria | 作用机制 Mechanism of action | 参考文献 References |
1 | 黄岑苷 | 对磷霉素钠、氯霉素、头孢噻肟钠耐药大肠杆菌E320 | 黄岑苷和以下几种抗生素联合使用MIC由2.5 g·L-1分别下降到0.625、0.625、0.313 g·L-1,磷霉素钠由512 mg·L-1降为64 mg·L-1,氯霉素MICs由512 mg·L-1降为128 mg·L-1,头孢噻肟钠MIC由1 024 mg·L-1降为256 mg·L-1 | 抑制细菌主动外排系统、使AcrB蛋白表达降低 | 赵子玉等[ |
2 | 黄岑苷 | 对阿奇霉素耐药的腐生葡萄球菌 | 黄芩苷MIC为500 mg·L-1,阿奇霉素MIC为1 000 mg·mL-1,黄岑苷与阿奇霉素呈协同作用 | 抑制外排系统来抑制细胞膜的形成及agr群体感应系统 | Wang等[ |
3 | (浸渍法提取)和精油(EO)(蒸馏法提取) | 耐甲氧西林药物金黄色葡萄球菌 | CE的MIC为78~1 250 μg·mL-1,EO的MIC为0.098%~0.195% | 抑制细菌主动外排系统、降低外排泵基因norA和mepA的表达 | Oo等[ |
4 | 苦参碱 | 耐替加环素的肺炎克伯雷菌 | 苦参碱与替加环素联用后,苦参碱MIC由(3 181.82±1 139.61) mg·L-1降为(1 221.59±618.83) mg·L-1,替加环素MIC由(38.18±21.76) mg·L-1(耐药)降为2.00 mg·L-1(敏感) | 使ramA、maeA、acrB基因表达量升高、acrR基因表达量降低从而抑制细菌主动外排系统 | 伍慧妍等[ |
5 | 黄连素 | 对喹诺酮类、碳青霉烯类、氨基糖苷类、β-内酰胺类耐药鲍曼不动杆菌 | 黄连素MIC为256 μg·mL-1,与黄连素联用后头孢他定、亚胺培南的MIC分别由64~128 mg·mL-1降为32~64 mg·mL-1和8~16 mg·mL-1,氨曲南MIC由256~512 μg·mL-1降为32~64 μg·mL-1,环丙沙星MIC由8~16 μg·mL-1降为4~8 μg·mL-1 | 抑制细菌主动外排系统,消除mdfA质子泵 | 林少华等[ |
6 | 水飞蓟宾 | 耐甲氧西林金黄色葡萄球菌 | 与水飞蓟宾联用环丙沙星和苯扎氯氨的MIC分别由128和4 μg·mL-1降为32和2 μg·mL-1 | 抑制细菌norA和qacA/B基因的表达、抑制外排系统 | Wang等[ |
7 | 木犀草素 | msrA阳性化脓隐秘菌 | 木犀草素MIC为78~156 μg·mL-1,木犀草素处理后大环内酯类药物对化脓隐秘菌的MIC显著降低 | 抑制msrA的表达,阻断MsrA外排泵的能量获取 | Guo等[ |
8 | 黄岑素 | 耐多西环素的鲍曼不动杆菌 | 黄岑素与1/4MIC多西环素联用FICI≤0.5,黄连素MIC为250 μg·mL-1,与多西环素联用后使多西环素MIC由128 μg·mL-1降为8 μg·mL-1 | 破坏生物膜和抑制多药外排泵 | Wang等[ |
9 | 香芹酚和百里酚 | 携带NorA的野生型和NorA过表达金黄色葡萄球菌 | 与香芹酚和百里酚联用后诺氟沙星对野生型和NorA过表达金黄色葡萄球菌MIC由64和128 μg·mL-1降为32和64 μg·mL-1 | 与NorA结合从而抑制NorA的外排作用 | Dos Santos等[ |
Table 3
Traditional Chinese medicine and active ingredients acting on enzymes causing antimicrobial-resistance in bacteria"
序号 No. | 中药 TCM | 耐药菌 Drug resistant bacteria | 对耐药菌的作用 The effect on drug-resistant bacteria | 作用机制 Mechanism of action | 参考文献 References |
1 | 黄柏、金银花、苦参、荆芥、荔枝草、白矾、玄明粉、川椒复方水煎剂 | 耐头孢曲松(CRO)、头孢噻肟(CTX)、头孢吡肟(FEP)的产ESBLs大肠杆菌 | 黄金洗剂MIC为0.6 g·mL-1,0.5 g·mL-1黄金洗剂的耐药消除率为FEP(13.9±1.3)%、CTX(2.9±1.1)%、CRO(3.0±1.6)%,0.1 g·mL-1黄金洗剂的耐药消除率为FEP(5.6±3.5)%、CTX(1.9±1.2)%、CRO(2.1±1.2)% | 抑制生物膜的形成和抑制超广谱β-内酰胺酶(ESBLs)的活性 | 衡雪源等[ |
2 | 加味黄连解毒汤 | 产超广谱β内酰胺酶的大肠埃希菌 | 加味黄连解毒汤MIC 0.8 g·mL-1 | 抑制ESBLs活性和含量 | Li等[ |
3 | 芸香苷 | 大肠杆菌E320、CTX-M-14阳性菌BL-21 | 与头孢噻肟钠联合使用(FICI=0.236和0.375),芸香苷单独使用MIC均为2.5 mg·mL-1,头孢噻肟钠单独使用对E320的MIC为1 024 μg·mL-1对CTX-M-14阳性菌MIC为>1 024 μg·mL-1 | 抑制β-内酰胺酶活性 | 赵子玉等[ |
4 | 厚朴酚 | NDM-1阳性大肠杆菌 | 与厚朴酚联用后美罗培南MIC由16~64 μg·mL-1降为4~16 μg·mL-1 | 抑制NDM-1酶活性(IC50=6.47 μg·mL-1) | Liu等[ |
5 | 紫檀芪 | NDM-1阳性大肠杆菌和肺炎克雷伯菌 | 与紫檀芪联用后美罗培南MIC由16~128 μg·mL-1降为4~32 μg·mL-1,全身感染耐药菌的小鼠存活率升高52% | 抑制NDM-1酶活性(与Trp93和Asp124的残基结合) | Liu等[ |
6 | 漆黄素 | NDM-1阳性大肠杆菌 | 与漆黄素联用后美罗培南MIC由16~37.33 μg·mL-1降为4~5.33 μg·mL-1,全身感染耐药菌的小鼠存活率升高40% | 抑制NDM-1酶活性(与Val73,Met248或His250结合,IC50=9.68 μg·mL-1) | Guo等[ |
7 | 异甘草苷 | NDM-1阳性大肠杆菌和肺炎克雷伯菌 | 与异甘草苷联用后美罗培南MIC由16~64 μg·mL-1降为4~16 μg·mL-1 | 抑制NDM-1酶活性 | Wang等[ |
8 | 茶黄素-3, 3′-二加酸酯 | MRSA | 与β内酰胺类抗生素联用FICI=0.313或0.188,β内酰胺类抗生素MICs由16~256 μg·mL-1降为4~32 μg·mL-1 | 抑制金属β内酰胺酶(MBLs)的水解活性(与Gln242和Ser369结合) | Teng等[ |
9 | 广藿香酮 | MCR-l阳性大肠埃希菌、肺炎克雷伯菌及鼠伤寒沙门菌 | 与黏菌素联合使用(FICI≤0.5),广藿香酮MIC为512 μg·mL-1,黏菌素MIC均>8 μg·mL-1 | 抑制MCR-1酶活性(直接占据氨基酸Ser330、Asp331和Phe344) | 解胜男[ |
10 | 蛇床子素 | mcr-1阳性大肠杆菌和肺炎克雷伯菌 | 与黏菌素联用FIC=0.11±0.04 ~0.29±0.10,黏菌素的MIC由1~32 μg·mL-1降为0.67~13.33 μg·mL-1 | 抑制MCR-1酶活性 | Zhou等[ |
11 | 和厚朴酚 | MCR-1阳性肺炎克雷伯菌和大肠杆菌 | 与多黏菌素B联用FICI=0.09±0.00~0.27±0.06多黏菌素B由MIC0.5~512 μg·mL-1降为0.42~5.33 μg·mL-1,全身感染耐药菌的小鼠存活率升高40% | 抑制MCR-1酶活性(与残基Ser284、Tyr287和Pro481结合) | Guo等[ |
12 | 异土木香内酯 | mcr-1阳性肺炎克雷伯菌和大肠杆菌 | 与多黏菌素B联用FIC<0.5,多黏菌素MIC由0.5~64 μg·mL-1降为0.5~6 μg·mL-1,全身感染耐药菌的小鼠存活率升高40% | 抑制MCR-1酶活性 | Lu等[ |
13 | 木豆素芪酸 | mcr-1阳性大肠杆菌 | 与多黏菌素B联用FICI=0.13~0.51,多黏菌素B的MIC由4~16 μg·mL-1降为1~2 μg·mL-1 | 抑制MCR-1酶活性 | Jia等[ |
14 | 棕榈碱 | QnrS和AAC(6′)-Ib-cr阳性大肠杆菌 | 棕榈碱MIC为1 024~2 048 μg·mL-1,与环丙沙星联合使用FIC=0.375~0.5,环丙沙星MICs由4~128 μg·mL-1下降为2~16 μg·mL-1 | 抑制QnrS的旋转酶保护作用和AAC(6′)-Ib-Ib-cr的乙酰化作用 | Wang等[ |
Table 4
Traditional Chinese medicine and active ingredients acting on the cell membrane of antimicrobial-resistant bacteria"
序号 No. | 中药 TCM | 耐药菌 Drug resistant bacteria | 对耐药菌的作用 The effect on drug-resistant bacteria | 作用机制 Mechanism of action | 参考文献 References |
1 | 平味丸 | 大肠杆菌ATCC、DH5α、ZJ478和肺炎克雷伯菌ZJ02、ZJ05以及沙门菌HYM2、ZZW20、15E464 | 平味丸MIC为1.024 mg·mL-1,黏菌素MIC由(1.5±0.58)~(53.33±18.48)μg·mL-1降为<4 μg·mL-1;平胃丸和黏菌素联用延长了沙门菌HYM2感染小鼠和鸡模型的中位生存期,降低了感染动物的细菌负荷和脏器指数,减轻了盲肠的病理损伤 | 加快破坏细胞膜的通透性 | Sheng等[ |
2 | 猴耳环乙酸乙酯提取物 | MRSA | 联用后红霉素、头孢曲松钠和左氧氟沙星的MIC90分别由1 024、2 048和32 μg·mL-1降为256、1 024和16 μg·mL-1 | 破坏细胞膜的通透性以及抑制PBP2a的表达 | Liu等[ |
3 | 麝香草酚 | mcr-1阳性肺炎克雷伯菌和大肠埃希菌 | 与黏菌素联用体内(P < 0.05)和体外(FICI < 0.5),黏菌素耐药菌株的黏菌素MICs由4~1 024 mg·L-1降为≤1 mg·L-1 | 抑制细胞膜形成、破坏生物膜的完整性 | Yao等[ |
4 | 槲皮素 | 对黏菌素耐药的鲍曼不动杆菌 | 槲皮素与黏菌素联用FICI=0.187 5~0.5, 与阿米卡星联用FICI=0.187 5~0.282 5, 与黏菌素联用MIC由128~256 μg·mL-1降低到8~32 μg·mL-1, 与阿米卡星联用MIC降低到32~64 μg·mL-1 | 破环细胞膜的完整性 | Odabas等[ |
5 | 石菖蒲根茎己烷提取物(Acorus calamus L. rhizome hexane AC-R-H)及其生物活性组分(S-III-BAF) | 耐多药大肠杆菌、铜绿假单胞菌、鲍曼不动杆菌、蜡样芽胞杆菌 | AC-R-H与氨苄西林联用对蜡样芽胞杆菌(FICI=0.365)、铜绿假单胞菌(FICI=0.456)和鲍曼不动杆菌(FICI=0.245),联用后氨苄西林对蜡样芽胞杆菌、大肠杆菌、鲍曼不动杆菌和铜绿假单胞菌的MIC分别由10、100、15、12.5 mg·mL-1下降为1.25、25、3.25、3.12 mg·mL-1 | 破坏细胞膜的完整性,增强细胞膜的通透性 | Kongkham等[ |
Table 5
Traditional Chinese medicine and active ingredients acting on antimicrobial-resistance genes"
序号 No. | 中药 TCM | 耐药菌 Drug resistant bacteria | 对耐药菌的作用 The effect on drug-resistant bacteria | 作用机制 Mechanism of action | 参考文献 References |
1 | 丁香酚 | 黏菌素耐药大肠杆菌 | 与黏菌素联用FICI=0.375~0.625,丁香酚MIC由4~8 μg·mL-1降为1~4 μg·mL-1,黏菌素MIC由1~16 μg·mL-1降为0.25~2 μg·mL-1 | 下调mcr-1基因的表达、直接抑制MCR-1活性 | Wang等[ |
2 | 黄连素 | 耐多黏菌素兔源性大肠杆菌 | 黄连素MIC为1.25 mg·mL-1,多黏菌素MIC为16 μg·mL-1, 氯丙嗪MIC为68 μg·mL-1,黄连素和氯丙嗪的耐药消除率分别为26.9%和5.6% | 消减大肠杆菌耐药基因mcr-1 | 王新兴等[ |
3 | 黄芩、芍药、黄连、鱼腥草、艾叶水煎剂 | 含aac(3)-Ⅱ的多重耐药阳性猪源大肠埃希菌 | MIC分别为黄岑0.3 g·mL-1、黄连0.2 g·mL-1、艾叶0.6 g·mL-1、赤芍0.5 g·mL-1、鱼腥草0.8 g·mL-1,黄岑、黄连、艾叶、赤芍、鱼腥草对acc(3)-Ⅱ基因消除率分别为95%、83%、89%、78%、5% | 消除耐药基因 | 黄永志等[ |
4 | 杨树花、地榆、地锦草、马齿苋两两组成复方水煎剂 | 耐氨苄西林、头孢他啶、庆大霉素、大观霉素、卡那霉素、恩诺沙星、氧氟沙星、环丙沙星、四环素、复方新诺明的大肠杆菌 | 杨树花+地榆62.5 mg·mL-1、杨树花+马齿草250 mg·mL-1、杨树花+地锦草62.5 mg·mL-1、地榆+马齿草125 mg·mL-1,中药对大肠杆菌耐药性平均消除率在10%以上 | 消除耐药基因aacC3-Ⅱ、aacC2、aph(3′)-Ⅱ | 鲁孟佳[ |
5 | 苏木、诃子、秦皮、五味子和黄连水煎剂 | 对β-内酰胺类、磺胺类以及其他抗菌药均耐药的貂源性大肠杆菌 | 苏木MIC为62.5~125.00 mg·mL-1,诃子、秦皮、五味子MIC为31.25~62.50 mg·mL-1,黄连MIC为62.5~250.00 mg·mL-1,中药对大肠杆菌耐药性消除率为2.8%~12.7% | 消除2~3个耐药基因:五味子对aadA、sul1和tetB效果较好,黄连对sul3和blaTEM1基因效果较好,而诃子对blaOXA1和blaCTX-M基因效果较好 | 王婧文等[ |
6 | 杠板归乙醇提取物和槲皮素 | 耐氟苯尼考大肠杆菌肠杆菌菌株DF2、GL26、GP46 | 杠板归提取物MIC为2.48~9.64 g·L-1、槲皮素MIC为1.56~6.62 g·L-1,提取物使大肠杆菌floR基因表达量下降8.84%~15.21% | 消除耐药基因floR基因 | 唐远江等[ |
Table 6
Traditional Chinese medicine and active ingredients acting on biofilm"
序号 No. | 中药 TCM | 耐药菌 Drug resistant bacteria | 对耐药菌的作用 The effect on drug-resistant bacteria | 作用机制 Mechanism of action | 参考文献 References |
1 | 芦荟大黄素 | 野生型幽门螺旋菌 | 与阿莫西林、克拉霉素、左氧氟沙星、甲硝唑、利福平、四环素等抗生素联用后MIC分别由2、4、2、8、32、16 μg·mL-1降为0.5、0.5、1、2、1、4 μg·mL-1 | 芦荟大黄素破坏幽门螺杆菌的生物膜并抑制omp6的表达 | Zhao等[ |
2 | 鹧鸪茶乙醇提取物 | 泰国双歧杆菌 | 使用75 μg·mL-1的鹧鸪茶处理双歧杆菌,使得生物膜形成量分别降低77.65%和47.78%。对已经形成的生物膜破坏率分别为28.18%和70.87% | 抑制生物膜的生成及破坏成熟的生物膜、干扰细菌群体感应系统 | Xu等[ |
3 | 牡丹荚水提取物(WE)、乙酸乙酯提取物(EA)、正丁醇提取物(NB)、石油醚提取物(PE)、正丁醇提取物(NB),及EA的主要成分没食子酸(GA)没食子酸甲酯(MG),1, 2, 3, 4, 6-O-五甲酰基-β-D-葡萄糖(PG)和槲皮素(QU) | MRSA ATCC43300和金黄色葡萄球菌ATCC29213 | 0.031 mg·mL-1EA的对MRSA的生物膜抑制率达到80%,0.625 mg·mL-1的WE可以抑制参与生物膜形成。0.025 mg·mL-1 PG、0.0125 mg·mL-1MG和0.025 mg·mL-1 QU对生物膜活性抑制率分别为87.7%、72.0%和51.9%,PG与甲氧西林(FICI≤0.5)和青霉素(FICI≤0.5)联用对MRSA具有协同作用,MG与甲氧西林(FICI≤0.5)联用对MRSA具有协同作用 | 抑制生物膜活性、影响生物膜形成 | Jin等[ |
4 | 丁香酚 | 沙雷菌C6LB | 32.3 mmol·L-1的丁香酚使生物膜形成量减少99%、可以去除62%的生物膜生物质,4.03 mmol·L-1的丁香酚使生物膜黏附活性降低40%、使生物膜活性降低20% | 降低生物膜的黏附性,抑制生物膜的形成 | Frikha等[ |
5 | 银杏叶水提取物(WE)、乙酸乙酯提取物(EA)、正丁醇提取物(NB)、石油醚提取物(PE)、正丁醇提取物(NB) | MRSA、溶血性链球菌 | EA和PE对MRSA的MIC分别为8和4 μg·mL-1,3倍MIC浓度的EA和PE完全抑制MRSA和溶血性链球菌生物膜的形成 | 抑制细菌生物膜的形成 | Wei等[ |
6 | 青蒿素 | 白色念珠菌 | 2 560、1 280、640和320 μg·mL-1的青蒿素对白色念珠菌的生物膜抑制率分别为91.2%、78.5%、50% 和40.2% | 抑制生物膜的形成 | Sumlu等[ |
7 | 柚皮素 | 临床分离的耐黏菌素肺炎克雷伯菌、大肠杆菌和鲍曼不动杆菌各7株 | 柚皮素与黏菌素联用具有协同作用(FICI < 0.5),联用显著抑制生物膜的形成(P < 0.05),联合用药显著提高大蜡螟的存活率(P < 0.05) | 抑制生物膜的形成、破坏细胞膜的完整性 | Xu等[ |
1 |
GRIFFITH M , POSTELNICK M , SCHEETZ M . Antimicrobial stewardship programs: methods of operation and suggested outcomes[J]. Expert Rev Anti Infect Ther, 2012, 10 (1): 63- 73.
doi: 10.1586/eri.11.153 |
2 |
FROST I , SATI H , GARCIA-VELLO P , et al. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline[J]. Lancet Microbe, 2023, 4 (2): e113- e125.
doi: 10.1016/S2666-5247(22)00303-2 |
3 | LIN Y C , CHEN E H , CHEN R P , et al. Probiotic Bacillus Affects Enterococcus faecalis antibiotic resistance transfer by interfering with pheromone signaling cascades[J]. Appl Environ Microbiol, 2021, 87 (13): e44221. |
4 |
LI J , FENG S , LIU X , et al. Effects of Traditional Chinese Medicine and its active ingredients on drug-resistant bacteria[J]. Front Pharmacol, 2022, 13, 837907.
doi: 10.3389/fphar.2022.837907 |
5 |
GORDILLO A F , FORSYTH J H , PATWA R , et al. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials[J]. Nat Microbiol, 2021, 6 (2): 157- 161.
doi: 10.1038/s41564-020-00830-7 |
6 | LEHTINEN S , CROUCHER N J , BLANQUART F , et al. Epidemiological dynamics of bacteriocin competition and antibiotic resistance[J]. Proc Biol Sci, 2022, 289 (1984): 20221197. |
7 |
DHARANI S , KIM D H , SHANKS R , et al. Susceptibility of colistin-resistant pathogens to predatory bacteria[J]. Res Microbiol, 2018, 169 (1): 52- 55.
doi: 10.1016/j.resmic.2017.09.001 |
8 |
HUANG W , MENG L , CHEN Y , et al. Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy[J]. Acta Biomater, 2022, 140, 102- 115.
doi: 10.1016/j.actbio.2021.12.005 |
9 |
SONG M , LIU Y , HUANG X , et al. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens[J]. Nat Microbiol, 2020, 5 (8): 1040- 1050.
doi: 10.1038/s41564-020-0723-z |
10 |
GOLBARG H , MEHDIPOUR M M . Antibacterial potency of medicinal plants including Artemisia annua and Oxalis corniculata against multi-drug resistance E. coil[J]. Biomed Res Int, 2021, 2021, 9981915.
doi: 10.1155/2021/9981915 |
11 |
ZHANG S , WANG J , AHN J . Advances in the Discovery of Efflux pump inhibitors as novel potentiators to control antimicrobial-resistant pathogens[J]. Antibiotics (Basel), 2023, 12 (9): 1417.
doi: 10.3390/antibiotics12091417 |
12 |
WANG Y M , KONG L C , LIU J , et al. Synergistic effect of eugenol with colistin against clinical isolated colistin-resistant Escherichia coli strains[J]. Antimicrob Resist Infect Control, 2018, 7, 17.
doi: 10.1186/s13756-018-0303-7 |
13 |
LI Y , DAI X , ZENG J , et al. Characterization of the global distribution and diversified plasmid reservoirs of the colistin resistance gene mcr-9[J]. Sci Rep, 2020, 10 (1): 8113.
doi: 10.1038/s41598-020-65106-w |
14 | 陆承平. 兽医微生物学[M]. 北京: 中国农业出版社, 2013. |
LU C P . Veterinary Microbiology[M]. Beijing: China Agriculture press, 2013. | |
15 |
KATHRYN B , ELLIE H , DUNCAN C , et al. Why do plasmids manipulate the expression of bacterial phenotypes?[J]. Philos Trans R Soc Lond B Biol Sci, 2022, 377 (1842): 20200461.
doi: 10.1098/rstb.2020.0461 |
16 |
LAU B T , MALKUS P , PAULSSON J . New quantitative methods for measuring plasmid loss rates reveal unexpected stability[J]. Plasmid, 2013, 70 (3): 353- 361.
doi: 10.1016/j.plasmid.2013.07.007 |
17 |
LOPATKIN A J , MEREDITH H R , SRIMANI J K , et al. Persistence and reversal of plasmid-mediated antibiotic resistance[J]. Nat Commun, 2017, 8 (1): 1689.
doi: 10.1038/s41467-017-01532-1 |
18 |
MILLAN A S , PEÑA-MILLER R , TOLL-RIERA M , et al. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids[J]. Nat Commun, 2014, 5 (1): 5208.
doi: 10.1038/ncomms6208 |
19 |
PAUL D , CHANDA D D , CHAKRAVARTY A , et al. An insight into analysis and elimination of plasmids encoding metallo-beta-lactamases in Pseudomonas aeruginosa[J]. J Glob Antimicrob Resist, 2020, 21, 3- 7.
doi: 10.1016/j.jgar.2019.09.002 |
20 |
NI B , DU Z , GUO Z , et al. Curing of four different plasmids in Yersinia pestis using plasmid incompatibility[J]. Lett Appl Microbiol, 2008, 47 (4): 235- 240.
doi: 10.1111/j.1472-765X.2008.02426.x |
21 |
WONGPAYAK P , MEESUNGNOEN O , SAEJANG S , et al. A highly effective and self-transmissible CRISPR antimicrobial for elimination of target plasmids without antibiotic selection[J]. PeerJ, 2021, 9, e11996.
doi: 10.7717/peerj.11996 |
22 |
ATTAALLAH I A , KADHIM M R . Synergistic antimicrobial activity of eugenol in combination with fosfomycin to combat Escherichia coli and potential effect on plasmid-mediated fosfomycin resistance genes[J]. Chem Biodivers, 2023, 20 (12): e202301567.
doi: 10.1002/cbdv.202301567 |
23 |
李永伟, 许晓娜, 刘心伟, 等. 黄连素对耐碳青霉烯类肺炎克雷伯菌耐药性的体外逆转作用[J]. 中国现代医药杂志, 2020, 22 (4): 14- 17.
doi: 10.3969/j.issn.1672-9463.2020.04.004 |
LI Y W , XU X N , LIU X W , et al. Reversing effect of Berberine on the resistance of carbapenem-resistant Klebsiella pneumonaie in vitro[J]. Modern Medicine Journal of China, 2020, 22 (4): 14- 17.
doi: 10.3969/j.issn.1672-9463.2020.04.004 |
|
24 | 刘心伟, 王志盛, 许晓娜, 等. 金银花水煎剂对产金属酶铜绿假单胞菌耐药性的体外逆转作用[J]. 中华医院感染学杂志, 2019, 29 (15): 2251- 2255. |
LIU X W , WANG Z S , XU X N , et al. Reversing effect of Lonicera japonica decoction on the resistance of metallo-β-lactmases producing pseudomonas aeruginosa in vitro[J]. Chinese Journal of Nosocomiology, 2019, 29 (15): 2251- 2255. | |
25 | 陈璐, 邓翔文, 郑婷婷, 等. 4种中药单体对IncX4型质粒pSD11稳定性的影响[J]. 应用与环境生物学报, 2023, 29 (1): 57- 63. |
CHEN L , DENG X W , ZHENG T T , et al. Effects of four traditional Chinese medicine monomers on stability of IncX4 plasmid pSD11[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29 (1): 57- 63. | |
26 |
AHMAD A , GHARIB A A , ELSHORBGY I , et al. Nigella sativa oil extract: A natural novel specific conjugal transfer inhibitor of vancomycin resistance from vanA/B-resistant Enterococcus faecium to Staphylococcus aureus[J]. J Appl Microbiol, 2022, 133 (2): 619- 629.
doi: 10.1111/jam.15567 |
27 |
WANG X Y , SONG H W , YI T , et al. Dihydroartemisinin inhibits plasmid transfer in drug-resistant Escherichia coli via limiting energy supply[J]. Zool Res, 2023, 44 (5): 894- 904.
doi: 10.24272/j.issn.2095-8137.2023.084 |
28 | MARSHALL N J , PIDDOCK L J . Antibacterial efflux systems[J]. Microbiologia, 1997, 13 (3): 285- 300. |
29 |
LORUSSO A B , CARRARA J A , BARROSO C , et al. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa[J]. Int J Mol Sci., 2022, 23 (24): 15779.
doi: 10.3390/ijms232415779 |
30 | YAMASAKI S , ZWAMA M , YONEDA T , et al. Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa[J]. Microbiology (Reading), 2023, 169 (6): 001322. |
31 |
ALAV I , SUTTON J M , RAHMAN K M . Role of bacterial efflux pumps in biofilm formation[J]. J Antimicrob Chemother, 2018, 73 (8): 2003- 2020.
doi: 10.1093/jac/dky042 |
32 | 赵子玉, 张鹏, 王春光, 等. 黄芩苷对大肠杆菌AcrB外排泵的抑制作用及其机制[J]. 中国兽医学报, 2022, 42 (9): 1861- 1868. |
ZHAO Z Y , ZHANG P , WANG C G , et al. Antimicrobial sensitization of baicalin against multidrug-resistant Escherichia coli[J]. Chinese Journal of Veterinary Science, 2022, 42 (09): 1861- 1868. | |
33 |
WANG J , JIAO H , MENG J , et al. Baicalin inhibits biofilm formation and the quorum-sensing system by regulating the MsrA drug efflux pump in Staphylococcus saprophyticus[J]. Front Microbiol, 2019, 10, 2800.
doi: 10.3389/fmicb.2019.02800 |
34 |
OO T , SAIBOONJAN B , SRIJAMPA S , et al. Inhibition of bacterial efflux pumps by crude extracts and essential oil from Myristica fragrans Houtt. (Nutmeg) seeds against methicillin-resistant Staphylococcus aureus[J]. Molecules, 2021, 26 (15): 4662.
doi: 10.3390/molecules26154662 |
35 | 伍慧妍, 钟瑶, 詹铀超, 等. 苦参碱逆转外排泵系统AcrAB-ToIC介导的耐碳青霉烯类肺炎克雷伯菌对替加环素的耐药性[J]. 医药导报, 2023, 42 (8): 1117- 1122. |
WU H Y , ZHONG Y , ZHAN Y C , et al. Matrine reverses efflux pump system aAcrAB-ToIC mediated tigecycline resistance of carbapenem-resistant klebsiella pneumoniae[J]. Herald of Medicine, 2023, 42 (8): 1117- 1122. | |
36 | 林少华, 骆丰, 刘靓珏, 等. 黄连素逆转鲍氏不动杆菌多药耐药性研究[J]. 中华医院感染学杂志, 2017, 27 (5): 965- 968. |
LIN S H , LUO F , LIU L J . Multidrug resistance of berberine reverse Acinetobacter baumannii[J]. Chinese Journal of Nosocomiology, 2017, 27 (5): 965- 968. | |
37 | WANG D , XIE K , ZOU D , et al. Inhibitory effects of silybin on the efflux pump of methicillin-resistant Staphylococcus aureus[J]. Mol Med Rep, 2018, 18 (1): 827- 833. |
38 |
GUO Y , HUANG C , SU H , et al. Luteolin increases susceptibility to macrolides by inhibiting MsrA efflux pump in Trueperella pyogenes[J]. Vet Res, 2022, 53 (1): 3.
doi: 10.1186/s13567-021-01021-w |
39 |
DOS SANTOS BARBOSA C R , SCHERF J R , DE FREITAS T S , et al. Effect of carvacrol and thymol on NorA efflux pump inhibition in multidrug-resistant (MDR) Staphylococcus aureus strains[J]. J Bioenerg Biomembr, 2021, 53 (4): 489- 498.
doi: 10.1007/s10863-021-09906-3 |
40 | WANG Y , SU J , ZHOU Z , et al. Baicalein resensitizes multidrug-resistant gram-negative pathogens to doxycycline[J]. Microbiol Spectr, 2023, 11 (3): e470222. |
41 |
YANG Y , YAN Y H , SCHOFIELD C J , et al. Metallo-beta-lactamase-mediated antimicrobial resistance and progress in inhibitor discovery[J]. Trends Microbiol, 2023, 31 (7): 735- 748.
doi: 10.1016/j.tim.2023.01.013 |
42 | 解胜男. 广藿香酮抑制MCR-1介导多粘菌素耐药性的作用及其机制[D]. 长春: 吉林大学, 2022. |
XIE S N. The mechanism of the inhibitory effect of pogostone on MCR-1 -mediated polymyxin resistance[D]. Changchun: Jilin University, 2022. (in Chinese) | |
43 |
VENKATARAMANA G P , LALITHA A , MARIAPPAN S , et al. Plasmid-mediated fluoroquinolone resistance in Pseudomonas aeruginosa and Acinetobacter baumannii[J]. J Lab Physicians, 2022, 14 (3): 271- 277.
doi: 10.1055/s-0042-1742636 |
44 |
衡雪源, 左志文, 朱德全, 等. "黄金洗剂"逆转ESBLs+E.coli耐药性的体外实验研究[J]. 国际检验医学杂志, 2020, 41 (16): 1958- 1961.
doi: 10.3969/j.issn.1673-4130.2020.16.009 |
HENG X Y , ZUO Z W , ZHU D Q , et al. Reversal effect of "Huang-Jin Lotion" on drug-resistance of ESBLs-producing E.coil in vitro[J]. International Journal of Laboratory Medicine, 2020, 41 (16): 1958- 1961.
doi: 10.3969/j.issn.1673-4130.2020.16.009 |
|
45 |
LI P , ZHU T , ZHOU D , et al. Analysis of resistance to florfenicol and the related mechanism of dissemination in different animal-derived bacteria[J]. Front Cell Infect Microbiol, 2020, 10, 369.
doi: 10.3389/fcimb.2020.00369 |
46 | 赵子玉, 王春光, 吕建存, 等. 超广谱β-内酰胺酶CTX-M-14中药抑制剂的筛选及芸香苷抑酶作用研究[J]. 生物技术通报, 2022, 38 (06): 235- 244. |
ZHAO Z Y , WANG C G , LÜ J C , et al. Screening of β-lactamase CTX-M-14 Chinese medicine inhibitor and enzyme inhibition of rutin[J]. Biotechnology Bulletin, 2022, 38 (06): 235- 244. | |
47 | LIU S , ZHOU Y , NIU X , et al. Magnolol restores the activity of meropenem against NDM-1-producing Escherichia coli by inhibiting the activity of metallo-beta-lactamase[J]. Cell Death Discov, 2018, 4, 28. |
48 |
LIU S , ZHANG J , ZHOU Y , et al. Pterostilbene restores carbapenem susceptibility in New Delhi metallo-β-lactamase-producing isolates by inhibiting the activity of New Delhi metallo-β-lactamases[J]. Br J Pharmacol, 2019, 176 (23): 4548- 4557.
doi: 10.1111/bph.14818 |
49 |
GUO Y , YANG Y , XU X , et al. Metallo-β--lactamases inhibitor fisetin attenuates meropenem resistance in NDM-1-producing Escherichia coli[J]. Eur J Med Chem, 2022, 231, 114108.
doi: 10.1016/j.ejmech.2022.114108 |
50 |
WANG Y , SUN X , KONG F , et al. Specific NDM-1 inhibitor of isoliquiritin enhances the activity of meropenem against NDM-1-positive Enterobacteriaceae in vitro[J]. Int J Environ Res Public Health, 2020, 17 (6): 2162.
doi: 10.3390/ijerph17062162 |
51 |
TENG Z , GUO Y , LIU X , et al. Theaflavin-3, 3-digallate increases the antibacterial activity of beta-lactam antibiotics by inhibiting metallo-beta-lactamase activity[J]. J Cell Mol Med, 2019, 23 (10): 6955- 6964.
doi: 10.1111/jcmm.14580 |
52 |
ZHOU Y , WANG J , GUO Y , et al. Discovery of a potential MCR-1 inhibitor that reverses polymyxin activity against clinical mcr-1-positive Enterobacteriaceae[J]. J Infect, 2019, 78 (5): 364- 372.
doi: 10.1016/j.jinf.2019.03.004 |
53 | GUO Y , LV X , WANG Y , et al. Honokiol restores polymyxin susceptibility to MCR-1-positive pathogens both in vitro and in vivo[J]. Appl Environ Microbiol, 2020, 86 (5): e02346- 19. |
54 |
LU N , LV Q , SUN X , et al. Isoalantolactone restores the sensitivity of gram-negative Enterobacteriaceae carrying MCR-1 to carbapenems[J]. J Cell Mol Med, 2020, 24 (4): 2475- 2483.
doi: 10.1111/jcmm.14936 |
55 |
JIA Y , LIU J , YANG Q , et al. Cajanin stilbene acid: A direct inhibitor of colistin resistance protein MCR-1 that restores the efficacy of polymyxin B against resistant Gram-negative bacteria[J]. Phytomedicine, 2023, 114, 154803.
doi: 10.1016/j.phymed.2023.154803 |
56 |
WANG P , HU L , HAO Z . Palmatine is a plasmid-mediated quinolone resistance (PMQR) inhibitor that restores the activity of ciprofloxacin against QnrS and AAC(6')-Ib-cr-producing Escherichia coli[J]. Infect Drug Resist, 2020, 13, 749- 759.
doi: 10.2147/IDR.S242304 |
57 |
SHENG Q , DU R , MA C , et al. NMPA-approved traditional Chinese medicine-Pingwei Pill: new indication for colistin recovery against MCR-positive bacteria infection[J]. Chin Med, 2021, 16 (1): 106.
doi: 10.1186/s13020-021-00518-y |
58 |
LIU C , HUANG H , ZHOU Q , et al. Pithecellobium clypearia extract enriched in gallic acid and luteolin has antibacterial activity against MRSA and reduces resistance to erythromycin, ceftriaxone sodium and levofloxacin[J]. J Appl Microbiol, 2020, 129 (4): 848- 859.
doi: 10.1111/jam.14668 |
59 | YAO Z , FENG L , ZHAO Y , et al. Thymol increases sensitivity of clinical Col-R Gram-negative bacteria to colistin[J]. Microbiol Spectr, 2022, 10 (4): e18422. |
60 |
ODABAS K E , KOYUNCU O O , BILMEN S , et al. Quercetin: synergistic interaction with antibiotics against colistin-resistant Acinetobacter baumannii[J]. Antibiotics (Basel), 2023, 12 (4): 739.
doi: 10.3390/antibiotics12040739 |
61 |
KONGKHAM B , DURAIVADIVEL P , HARIPRASAD P . Acorus calamus L. rhizome extract and its bioactive fraction exhibits antibacterial effect by modulating membrane permeability and fatty acid composition[J]. J Ethnopharmacol, 2024, 331, 118323.
doi: 10.1016/j.jep.2024.118323 |
62 |
JIAN Z , ZENG L , XU T , et al. Antibiotic resistance genes in bacteria: Occurrence, spread, and control[J]. J Basic Microbiol, 2021, 61 (12): 1049- 1070.
doi: 10.1002/jobm.202100201 |
63 | 任玲玲. 中药"连黄"对大肠埃希菌耐药基因AcrA影响的初步研究[D]. 延边: 延边大学, 2010. |
REN L L. Study on the influence of the Chinese traditional medicine LN on drug resistance gene AcrA of E. coli[D]. Yanbian: Yanbian University, 2010. (in Chinese) | |
64 |
王新兴, 刘有旺, 张轩, 等. 黄连素对耐多黏菌素大肠杆菌的耐药性逆转和mcr-1基因消减作用[J]. 中国医药科学, 2022, 12 (01): 129- 132.
doi: 10.3969/j.issn.2095-0616.2022.01.034 |
WANG X X , LIU Y W , ZHANG X , et al. Reversal of berberine resistance to polymyxin-resistant Escherichia coli and reduction of mcr-1 gene[J]. China Medicine and Pharmacy, 2022, 12 (01): 129- 132.
doi: 10.3969/j.issn.2095-0616.2022.01.034 |
|
65 |
黄永志, 李凯强, 董发明, 等. 5种中药对大肠埃希菌aac(3)-Ⅱ耐药性的消除作用[J]. 动物医学进展, 2019, 40 (10): 60- 63.
doi: 10.3969/j.issn.1007-5038.2019.10.012 |
HUANG Y Z , LI K Q , DONG F M , et al. Eliminating effect of aac(3)-Ⅱ drug resistance of Escherichia coli by five kinds of tradition Chinese medicines[J]. Progress in Veterinary Medicine, 2019, 40 (10): 60- 63.
doi: 10.3969/j.issn.1007-5038.2019.10.012 |
|
66 | 鲁孟佳. 中药复方对猪源大肠杆菌的体外抑制及耐药消除作用[D]. 杨凌: 西北农林科技大学, 2019. |
LU M J. Inhibition in vitro and elimination of drug resistance of swine Escherichia coli by Traditional Chinese Medicine compounds[D]. Yangling: Northwest A&F University, 2019. (in Chinese) | |
67 | 李志君, 鲁孟佳, 张雯, 等. 中药复方对猪源多重耐药大肠埃希氏菌的耐药性消除研究[J]. 动物医学进展, 2022, 43 (02): 76- 80. |
LI Z J , LU M J , ZHANG W , et al. Drug resistance elimination effect of Tradition Chinese medicine compounds on multi-drug resistant Escherichia coli derived from swine[J]. Progress in Veterinary Medicine, 2022, 43 (02): 76- 80. | |
68 | 王婧文, 谭贻鸿, 高昊天, 等. 5味中药对貉源大肠杆菌体外抑菌效果及耐药性的影响[J]. 中国预防兽医学报, 2021, 43 (4): 370- 375. |
WANG Q W , TAN Y H , GAO H T , et al. Antibacterial and drug resistance elimination effects of 5 traditional Chinese medicines in vitro on E. coli isolated from raccoon dog[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43 (4): 370- 375. | |
69 | 唐远江, 张涛, 周思旋, 等. 杠板归对猪源大肠杆菌氟苯尼考耐药基因floR表达量的影响[J]. 江苏农业科学, 2022, 50 (17): 187- 191. |
TANG Y J , ZHANG T , ZHOU S X , et al. Effect of perfoliate knotweed on expression of florfenicol resistance gene floR in swine Escherichia coli[J]. Jiangsu Agricultural Sciences, 2022, 50 (17): 187- 191. | |
70 | 陆章平, 常彦斌, 李可可, 等. 抗菌肽作为潜在的生物被膜抑制剂的研究进展[J]. 中国生物制品学杂志, 2024, 37 (4): 505- 512. |
LU Z P , CHANG Y B , LI K K , et al. Research progress of antimicrobial peptides as potential biofilm inhibitors[J]. Chinese Journal of Biologicals, 2024, 37 (04): 505- 512. | |
71 | 高翔, 黎会苹, 郎啸, 等. 牦牛致病性大肠杆菌生物被膜形成能力及影响因素分析[J]. 农业生物技术学报, 2024, 32 (04): 873- 881. |
GAO X , LI H P , LANG X , et al. Analysis of biofilm formation ability and influencing factors of Yak (Bos grunniens) pathogenic Escherichia coli[J]. Journal of Agricultural Biotechnology, 2024, 32 (04): 873- 881. | |
72 | 汪宗林, 陈建荣, 尤忠毓, 等. 金黄色葡萄球菌生物被膜形成与耐药机制的研究进展[J]. 生物工程学报, 2024, 40 (7): 2038- 2051. |
WANG Z L , CHEN J R , YOU Z Y , et al. Advances in mechanisms of biofilm formation and drug resistance of Staphylococcus aureus[J]. Chinese Journal of Biotechnology, 2024, 40 (7): 2038- 2051. | |
73 |
ZHAO Y , CHEN Z , CAI Y , et al. Aloe-emodin destroys the biofilm of Helicobacter pylori by targeting the outer membrane protein 6[J]. Microbiol Res, 2024, 278, 127539.
doi: 10.1016/j.micres.2023.127539 |
74 |
XU K Z , XIANG S L , WANG Y J , et al. Methyl gallate isolated from partridge tea (Mallotus oblongifolius (Miq.) Mull. Arg.) inhibits the biofilms and virulence factors of Burkholderia thailandensis[J]. J Ethnopharmacol, 2024, 320, 117422.
doi: 10.1016/j.jep.2023.117422 |
75 |
JIN Y , LIN J , SHI H , et al. The active ingredients in Chinese peony pods synergize with antibiotics to inhibit MRSA growth and biofilm formation[J]. Microbiol Res, 2024, 281, 127625.
doi: 10.1016/j.micres.2024.127625 |
76 |
FRIKHA F , JARDAK M , AIFA S , et al. A novel perspective on eugenol as a natural anti-quorum sensing molecule against Serratia sp[J]. Microb Pathog, 2024, 189, 106576.
doi: 10.1016/j.micpath.2024.106576 |
77 |
WEI P W , WANG X , WANG C , et al. Ginkgo biloba L. exocarp petroleum ether extract inhibits methicillin-resistant Staphylococcus aureus by modulating ion transport, virulence, and biofilm formation in vitro and in vivo[J]. J Ethnopharmacol, 2024, 328, 117957.
doi: 10.1016/j.jep.2024.117957 |
78 |
SUMLU E , AYDIN M , KORUCU E N , et al. Artemisinin may disrupt hyphae formation by suppressing biofilm-related genes of Candida albicans: in vitro and in silico approaches[J]. Antibiotics (Basel), 2024, 13 (4): 310.
doi: 10.3390/antibiotics13040310 |
79 |
XU M , YAO Z , ZHAO Y , et al. Naringenin restores colistin activation against colistin-resistant gram-negative bacteria in vitro and in vivo[J]. Front Microbiol, 2022, 13, 916587.
doi: 10.3389/fmicb.2022.916587 |
80 |
LI J , FAN Q , JIN M , et al. Paeoniflorin reduce luxS/AI-2 system-controlled biofilm formation and virulence in Streptococcus suis[J]. Virulence, 2021, 12 (1): 3062- 3073.
doi: 10.1080/21505594.2021.2010398 |
[1] | WANG Hui, WANG Yueshang, HU Xiyi, HAN Chengquan, LI Fukuan, YANG Yan, LÜ Shenjin. Reversal Effect of Environmental Enrichment on Behavioral Abnormalities in Lactation Maternal Separation Offspring and Its Molecular Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1527-1539. |
[2] | JI Xing, LI Jun, WANG Ran, HE Tao. Research Progress on Virulence Regulation and Antivirulence Drugs of Staphylococcus aureus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1594-1607. |
[3] | QIU Qian, SANG Rui, WANG Wei, LIU Xinman, YU Minghong, LIU Xiaotong, YU Tian, ZHANG Xuemei. Study on the Activity of Huning Powder against Chicken Lung-derived E. coli and the in vitro Effects of Anti-inflammation and Anti-oxidation [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1969-1980. |
[4] | ZHANG Yanmin, LIU Shuai, TENG Zhanwei, XIE Hongbing, XIA Xiaojing, HE Yonghui, CHANG Meinan. Research Progress on the Mechanism of Functional Oligosaccharides Alleviating Calf Diarrhea [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 979-994. |
[5] | LI Anben, FU Nana, LUO Xiaoping, LI Junyan, LIU Yang. Progress in the Study of Drug Resistance and Its Reversal in Haemonchus contortus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 523-533. |
[6] | Hongyu FU, Yue LI, Han CUI, Jiuzhi LI, Wanxue XU, Xi WANG, Ruifeng FAN. The Mechanism of Long-Chain acyl-CoA Synthetase 4-mediated Ferroptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3792-3801. |
[7] | Yuxin GAO, Qing LIU, Jilan CHEN, Hui MA. Research Advances in the Mechanism of Parasite-host Interaction Mediated by miRNAs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3812-3823. |
[8] | Anlin WEN, Yunyun YANG, Yongrong LUO, Ying YANG, Zhentao CHENG, Deyuan OU, Ming WEN. Network Pharmacologic Analysis and Experimential Verification on the Mechanism of Coptidis Rhizoma in Preventing Duck Viral Enteritis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3225-3233. |
[9] | Zhengyang ZHANG, Yinjuan SONG, Yuefeng CHU. Research Progress on the Role of HIF-1α in Pathogen Infections [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2357-2367. |
[10] | Xiaoyu JI, Yongwei WANG, Yan QIU, Cai ZHANG. Physiological Functions of Glycyrrhiza Polysaccharides and Its Applications in Livestock and Poultry Production [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2379-2387. |
[11] | Dongliang LI, Guanmin ZHENG, Shuai LI, Hongsen ZHU, Chao WU. Differential Expression of Transcriptome in Jejunal of Piglets Infected with Porcine Epidemic Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2652-2661. |
[12] | NIU Jiajia, XU Dan, LIU Yang, ZHAO Xiaoling. Research Progress on Genetic Regulation Mechanism of Barring Feather Trait in Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1883-1892. |
[13] | YU Zuhua, GAO Mengru, QI Zhiying, ZHANG Jingyu, HE Lei, CHEN Jian, DING Ke. Research Progress on the Function of RNA Binding Protein ELAVL1 and Its Regulation of Viral Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1914-1925. |
[14] | ZHANG Jixian, FAN Dingkun, FU Yuze, JIAO Shuai, MA Tao, BI Yanliang, ZHANG Naifeng. Research Progress on Mechanism and Application of Postbiotics in Regulating Animal Intestinal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1926-1935. |
[15] | HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||