Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (6): 2334-2344.doi: 10.11843/j.issn.0366-6964.2024.06.006
• Review • Previous Articles Next Articles
Tingting CHU(), Xiaoyu ZHANG, Lei SUN, Jiashun TONG, Lei ZHANG, Yuxuan SONG*(
)
Received:
2023-10-19
Online:
2024-06-23
Published:
2024-06-28
Contact:
Yuxuan SONG
E-mail:ttiingchu@nwafu.edu.cn;syx98728@163.com
CLC Number:
Tingting CHU, Xiaoyu ZHANG, Lei SUN, Jiashun TONG, Lei ZHANG, Yuxuan SONG. Advances in Cellular and Molecular Mechanisms of Endometrial Fibrosis in Domestic Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2334-2344.
Table 1
Signaling pathways involved in the regulation of endometrial fibrosis"
信号通路 Signaling pathway | 靶向细胞 Targeted cells | 调控因子 Regulators | 参与纤维化的调控作用 Involved in the regulation of fibrosis | 参考文献 Reference |
TGF-β | 上皮细胞、成纤维细胞 | IL-17A、SMAD、RhoA、Ras、TAK1、P13K、mTOR | 促进EMT,促进胶原蛋白和纤连蛋白的合成,促进谷氨酰胺分解 | [ |
Hippo | 成纤维细胞、肌成纤维细胞、 | TAZ、YAP、Wnt、Smad | 促进α-SMA和CTGF表达,调节干细胞的生长和分化,诱导COL1A1上调,调控成纤维细胞分化和ECM合成 | [ |
Hedgehog | 基质细胞 | CTGF、Gli1、Ptch1 | 促进肌成纤维细胞活化,诱导COL1A1、α-SMA表达 | [ |
PI3K/AKT | 基质细胞 | mTOR | 促进基质细胞增殖分化、促进胶原沉积 | [ |
Wnt/β-Catenin | 基质细胞 | mTOR | 促进αSMA、Col-I、FN和CTGF表达 | [ |
1 |
ZHANG S H , ZHANG R Y , YIN X Y , et al. MenSCs transplantation improve the viability of injured endometrial cells through activating PI3K/Akt pathway[J]. Reprod Sci, 2023, 30 (11): 3325- 3338.
doi: 10.1007/s43032-023-01282-0 |
2 |
HENDERSON N C , RIEDER F , WYNN T A . Fibrosis: from mechanisms to medicines[J]. Nature, 2020, 587 (7835): 555- 566.
doi: 10.1038/s41586-020-2938-9 |
3 |
HINZ B , LAGARES D . Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases[J]. Nat Rev Rheumatol, 2020, 16 (1): 11- 31.
doi: 10.1038/s41584-019-0324-5 |
4 |
ZULLO A , MANCINI F P , SCHLEIP R , et al. Fibrosis: Sirtuins at the checkpoints of myofibroblast differentiation and profibrotic activity[J]. Wound Repair Regen, 2021, 29 (4): 650- 666.
doi: 10.1111/wrr.12943 |
5 |
ZHAO M Y , WANG L Q , WANG M Z , et al. Targeting fibrosis: mechanisms and clinical trials[J]. Signal Transduct Target Ther, 2022, 7 (1): 206.
doi: 10.1038/s41392-022-01070-3 |
6 |
GOMES G M , CRESPILHO A M , LEÃO K M , et al. Can sperm selection, inseminating dose, and artificial insemination technique influence endometrial inflammatory response in mares[J]. J Equine Vet Sci, 2019, 73, 43- 47.
doi: 10.1016/j.jevs.2018.09.010 |
7 |
LI H Q , YUAN C N , WANG H , et al. The effect of selenium on endometrial repair in goats with endometritis at high cortisol levels[J]. Biol Trace Elem Res, 2023,
doi: 10.1007/s12011-023-03866-y |
8 |
RUA M A S , QUIRINO C R , RIBEIRO R B , et al. Diagnostic methods to detect uterus illnesses in mares[J]. Theriogenology, 2018, 114, 285- 292.
doi: 10.1016/j.theriogenology.2018.03.042 |
9 |
SKARZYNSKI D J , SZÓSTEK-MIODUCHOWSKA A Z , REBORDÃO M R , et al. Neutrophils, monocytes and other immune components in the equine endometrium: friends or foes[J]. Theriogenology, 2020, 150, 150- 157.
doi: 10.1016/j.theriogenology.2020.01.018 |
10 |
罗芳, 张萌, 李亚超, 等. 影响奶牛早期胚胎丢失的因素[J]. 畜牧兽医学报, 2020, 51 (5): 907- 913.
doi: 10.11843/j.issn.0366-6964.2020.05.002 |
LUO F , ZHANG M , LI Y C , et al. Factors associated with early embryo loss in dairy cows[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (5): 907- 913.
doi: 10.11843/j.issn.0366-6964.2020.05.002 |
|
11 |
王瑞玲, 王雪妍, 王菲菲, 等. 奶牛产后急性子宫内膜炎血液氧化脂质组变化特征[J]. 畜牧兽医学报, 2024, 55 (1): 373- 387.
doi: 10.11843/j.issn.0366-6964.2024.01.035 |
WANG R L , WANG X Y , WANG F F , et al. Study on the changes of blood oxidized lipid group in postpartum dairy cows with acute endometritis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (1): 373- 387.
doi: 10.11843/j.issn.0366-6964.2024.01.035 |
|
12 |
PLIKUS M V , WANG X J , SINHA S , et al. Fibroblasts: origins, definitions, and functions in health and disease[J]. Cell, 2021, 184 (15): 3852- 3872.
doi: 10.1016/j.cell.2021.06.024 |
13 |
MUHL L , GENOVÉ G , LEPTIDIS S , et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination[J]. Nat Commun, 2020, 11 (1): 3953.
doi: 10.1038/s41467-020-17740-1 |
14 |
TALBOTT H E , MASCHARAK S , GRIFFIN M , et al. Wound healing, fibroblast heterogeneity, and fibrosis[J]. Cell Stem Cell, 2022, 29 (8): 1161- 1180.
doi: 10.1016/j.stem.2022.07.006 |
15 |
LEMOS D R , DUFFIELD J S . Tissue-resident mesenchymal stromal cells: implications for tissue-specific antifibrotic therapies[J]. Sci Transl Med, 2018, 10 (426): eaan5174.
doi: 10.1126/scitranslmed.aan5174 |
16 |
LEBLEU V S , NEILSON E G . Origin and functional heterogeneity of fibroblasts[J]. FASEB J, 2020, 34 (3): 3519- 3536.
doi: 10.1096/fj.201903188R |
17 |
LI L , LU M Z , PENG Y L , et al. Oxidatively stressed extracellular microenvironment drives fibroblast activation and kidney fibrosis[J]. Redox Biol, 2023, 67, 102868.
doi: 10.1016/j.redox.2023.102868 |
18 |
PAKSHIR P , ALIZADEHGIASHI M , WONG B , et al. Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix[J]. Nat Commun, 2019, 10 (1): 1850.
doi: 10.1038/s41467-019-09709-6 |
19 |
SCHUSTER R , YOUNESI F , EZZO M , et al. The role of myofibroblasts in physiological and pathological tissue repair[J]. Cold Spring Harb Perspect Biol, 2023, 15 (1): a041231.
doi: 10.1101/cshperspect.a041231 |
20 |
LURJE I , GAISA N T , WEISKIRCHEN R , et al. Mechanisms of organ fibrosis: emerging concepts and implications for novel treatment strategies[J]. Mol Aspects Med, 2023, 92, 101191.
doi: 10.1016/j.mam.2023.101191 |
21 |
KATO K , LOGSDON N J , SHIN Y J , et al. Impaired myofibroblast dedifferentiation contributes to nonresolving fibrosis in aging[J]. Am J Respir Cell Mol Biol, 2020, 62 (5): 633- 644.
doi: 10.1165/rcmb.2019-0092OC |
22 | WALTER I , HANDLER J , MILLER I , et al. Matrix metalloproteinase 2 (MMP-2) and tissue transglutaminase (TG 2) are expressed in periglandular fibrosis in horse mares with endometrosis[J]. Histol Histopathol, 2005, 20 (4): 1105- 1113. |
23 |
AMACK J D . Cellular dynamics of EMT: lessons from live in vivo imaging of embryonic development[J]. Cell Commun Signal, 2021, 19 (1): 79.
doi: 10.1186/s12964-021-00761-8 |
24 |
TAKI M , ABIKO K , UKITA M , et al. Tumor immune microenvironment during epithelial-mesenchymal transition[J]. Clin Cancer Res, 2021, 27 (17): 4669- 4679.
doi: 10.1158/1078-0432.CCR-20-4459 |
25 |
MARCONI G D , FONTICOLI L , RAJAN T S , et al. Epithelial-Mesenchymal Transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis[J]. Cells, 2021, 10 (7): 1587.
doi: 10.3390/cells10071587 |
26 |
MANFIOLETTI G , FEDELE M . Epithelial-Mesenchymal Transition (EMT) 2021[J]. Int J Mol Sci, 2022, 23 (10): 5848.
doi: 10.3390/ijms23105848 |
27 |
ZEISBERG M , NEILSON E G . Biomarkers for epithelial-mesenchymal transitions[J]. J Clin Invest, 2009, 119 (6): 1429- 1437.
doi: 10.1172/JCI36183 |
28 |
XU J , LAMOUILLE S , DERYNCK R . TGF-β-induced epithelial to mesenchymal transition[J]. Cell Res, 2009, 19 (2): 156- 172.
doi: 10.1038/cr.2009.5 |
29 |
FRANGOGIANNIS N G . Transforming growth factor-β in tissue fibrosis[J]. J Exp Med, 2020, 217 (3): e20190103.
doi: 10.1084/jem.20190103 |
30 |
LOVISA S . Epithelial-to-mesenchymal transition in fibrosis: concepts and targeting strategies[J]. Front Pharmacol, 2021, 12, 737570.
doi: 10.3389/fphar.2021.737570 |
31 |
WANG X C , SONG K , TU B , et al. New aspects of the epigenetic regulation of EMT related to pulmonary fibrosis[J]. Eur J Pharmacol, 2023, 956, 175959.
doi: 10.1016/j.ejphar.2023.175959 |
32 |
YAO L D , CONFORTI F , HILL C , et al. Paracrine signalling during ZEB1-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in lung fibrosis[J]. Cell Death Differ, 2019, 26 (5): 943- 957.
doi: 10.1038/s41418-018-0175-7 |
33 |
MINKWITZ C , SCHOON H A , ZHANG Q , et al. Plasticity of endometrial epithelial and stromal cells-a new approach towards the pathogenesis of equine endometrosis[J]. Reprod Domest Anim, 2019, 54 (6): 835- 845.
doi: 10.1111/rda.13431 |
34 | BORDON Y . CXCL8 blockade reduces fibrosis in endometriosis[J]. Nat Rev Immunol, 2023, 23 (4): 203. |
35 |
XU X X , CAO L B , WANG Z , et al. Creation of a rabbit model for intrauterine adhesions using electrothermal injury[J]. J Zhejiang Univ Sci B, 2018, 19 (5): 383- 389.
doi: 10.1631/jzus.B1700086 |
36 |
VU R , DRAGAN M , SUN P , et al. Epithelial-mesenchymal plasticity and endothelial-mesenchymal transition in cutaneous wound healing[J]. Cold Spring Harb Perspect Biol, 2023, 15 (8): a041237.
doi: 10.1101/cshperspect.a041237 |
37 |
MAN S , SANCHEZ DUFFHUES G , TEN DIJKE P , et al. The therapeutic potential of targeting the endothelial-to-mesenchymal transition[J]. Angiogenesis, 2019, 22 (1): 3- 13.
doi: 10.1007/s10456-018-9639-0 |
38 |
LU D K , JIANG H , ZOU T , et al. Endothelial-to-mesenchymal transition: new insights into vascular calcification[J]. Biochem Pharmacol, 2023, 213, 115579.
doi: 10.1016/j.bcp.2023.115579 |
39 |
YAN D M , LIU X S , XU H , et al. Platelets induce endothelial-mesenchymal transition and subsequent fibrogenesis in endometriosis[J]. Reprod BioMed Online, 2020, 41 (3): 500- 517.
doi: 10.1016/j.rbmo.2020.03.020 |
40 |
LEUNG R K K , LIN Y X , LIU Y H . Recent advances in understandings towards pathogenesis and treatment for intrauterine adhesion and disruptive insights from single-cell analysis[J]. Reprod Sci, 2021, 28 (7): 1812- 1826.
doi: 10.1007/s43032-020-00343-y |
41 |
HUANG E Y , PENG N , XIAO F , et al. The roles of immune cells in the pathogenesis of fibrosis[J]. Int J Mol Sci, 2020, 21 (15): 5203.
doi: 10.3390/ijms21155203 |
42 |
SMIGIEL K S , PARKS W C . Macrophages, wound healing, and fibrosis: recent insights[J]. Curr Rheumatol Rep, 2018, 20 (4): 17.
doi: 10.1007/s11926-018-0725-5 |
43 |
SHEN B , LIU X H , FAN Y , et al. Macrophages regulate renal fibrosis through modulating TGFβ superfamily signaling[J]. Inflammation, 2014, 37 (6): 2076- 2084.
doi: 10.1007/s10753-014-9941-y |
44 |
LV H N , SUN H X , WANG L M , et al. Targeting CD301+ macrophages inhibits endometrial fibrosis and improves pregnancy outcome[J]. EMBO Mol Med, 2023, 15 (9): e17601.
doi: 10.15252/emmm.202317601 |
45 |
BORTHWICK L A , WYNN T A , FISHER A J . Cytokine mediated tissue fibrosis[J]. Biochim Biophys Acta Mol Basis Dis, 2013, 1832 (7): 1049- 1060.
doi: 10.1016/j.bbadis.2012.09.014 |
46 |
YANAGIHARA T , TSUBOUCHI K , GHOLIOF M , et al. Connective-tissue growth factor contributes to TGF-β1-induced lung fibrosis[J]. Am J Respir Cell Mol Biol, 2022, 66 (3): 260- 270.
doi: 10.1165/rcmb.2020-0504OC |
47 |
MILLS K H G . IL-17 and IL-17-producing cells in protection versus pathology[J]. Nat Rev Immunol, 2023, 23 (1): 38- 54.
doi: 10.1038/s41577-022-00746-9 |
48 |
ATAMAS S P . Complex cytokine regulation of tissue fibrosis[J]. Life Sci, 2002, 72 (6): 631- 643.
doi: 10.1016/S0024-3205(02)02299-3 |
49 |
XIAO F Y , LIU X S , GUO S W . Interleukin-33 derived from endometriotic lesions promotes fibrogenesis through inducing the production of profibrotic cytokines by regulatory T cells[J]. Biomedicines, 2022, 10 (11): 2893.
doi: 10.3390/biomedicines10112893 |
50 |
MACK M . Inflammation and fibrosis[J]. Matrix Biol, 2018, 68-69, 106- 121.
doi: 10.1016/j.matbio.2017.11.010 |
51 |
SHI N , WANG Z H , ZHU H C , et al. Research progress on drugs targeting the TGF-β signaling pathway in fibrotic diseases[J]. Immunol Res, 2022, 70 (3): 276- 288.
doi: 10.1007/s12026-022-09267-y |
52 |
XU J , TAN Y L , LIU Q Y , et al. Quercetin regulates fibrogenic responses of endometrial stromal cell by upregulating miR-145 and inhibiting the TGF-β1/Smad2/Smad3 pathway[J]. Acta Histochem, 2020, 122 (7): 151600.
doi: 10.1016/j.acthis.2020.151600 |
53 |
ZHU Z Y , SONG Y , CHEN X M , et al. Hyperoside inhibits endometrial fibrosis and inflammation by targeting TGF-β/Smad3 signaling in intrauterine adhesion rats[J]. Rev Bras Farmacogn, 2022, 33 (1): 89- 94.
doi: 10.1007/s43450-022-00283-5 |
54 |
ZHU H Y , GE T X , PAN Y B , et al. Advanced role of hippo signaling in endometrial fibrosis: implications for intrauterine adhesion[J]. Chin Med J (Engl), 2017, 130 (22): 2732- 2737.
doi: 10.4103/0366-6999.218013 |
55 |
WEI C , PAN Y B , ZHANG Y L , et al. Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells[J]. Cell Death Dis, 2020, 11 (9): 755.
doi: 10.1038/s41419-020-02956-2 |
56 |
XUE X , LI X L , YAO J M , et al. Transient and prolonged activation of Wnt signaling contribute oppositely to the pathogenesis of Asherman's syndrome[J]. Int J Mol Sci, 2022, 23 (15): 8808.
doi: 10.3390/ijms23158808 |
57 |
MATSUZAKI S , DARCHA C . Involvement of the Wnt/β-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis[J]. PLoS One, 2013, 8 (10): e76808.
doi: 10.1371/journal.pone.0076808 |
58 |
AL-HENDY A , DIAMOND M P , BOYER T G , et al. Vitamin D3 inhibits Wnt/β-catenin and mTOR signaling pathways in human uterine fibroid cells[J]. J Clin Endocrinol Metab, 2016, 101 (4): 1542- 1551.
doi: 10.1210/jc.2015-3555 |
59 |
GUO Z Z , WANG Y Q , WEN X Y , et al. β-klotho promotes the development of intrauterine adhesions via the PI3K/AKT signaling pathway[J]. Int J Mol Sci, 2022, 23 (19): 11294.
doi: 10.3390/ijms231911294 |
60 |
MIA M M , SINGH M K . New insights into hippo/YAP signaling in fibrotic diseases[J]. Cells, 2022, 11 (13): 2065.
doi: 10.3390/cells11132065 |
61 |
ZHOU Y Y , PENG Y Y , XIA Q Q , et al. Decreased Indian hedgehog signaling activates autophagy in endometriosis and adenomyosis[J]. Reproduction, 2021, 161 (2): 99- 109.
doi: 10.1530/REP-20-0172 |
62 | CAVALCANTE M B , SACCON T D , NUNES A D C , et al. Dasatinib plus quercetin prevents uterine age-related dysfunction and fibrosis in mice[J]. Aging (Albany NY), 2020, 12 (3): 2711- 2722. |
63 |
YE C S , CHEN P , XU B N , et al. Abnormal expression of fission and fusion genes and the morphology of mitochondria in eutopic and ectopic endometrium[J]. Eur J Med Res, 2023, 28 (1): 209.
doi: 10.1186/s40001-023-01180-w |
64 |
NIGDELIOGLU R , HAMANAKA R B , MELITON A Y , et al. Transforming Growth Factor (TGF)-β promotes De Novo serine synthesis for collagen production[J]. J Biol Chem, 2016, 291 (53): 27239- 27251.
doi: 10.1074/jbc.M116.756247 |
65 |
HAMANAKA R B , MUTLU G M . Metabolic requirements of pulmonary fibrosis: role of fibroblast metabolism[J]. FEBS J, 2021, 288 (22): 6331- 6352.
doi: 10.1111/febs.15693 |
66 |
PHANG J M . The regulatory mechanisms of proline and hydroxyproline metabolism: recent advances in perspective[J]. Front Oncol, 2023, 12, 1118675.
doi: 10.3389/fonc.2022.1118675 |
67 |
ZHAO X , KWAN J Y Y , YIP K , et al. Targeting metabolic dysregulation for fibrosis therapy[J]. Nat Rev Drug Discov, 2020, 19 (1): 57- 75.
doi: 10.1038/s41573-019-0040-5 |
68 | HWANG S , CHUNG K W . Targeting fatty acid metabolism for fibrotic disorders[J]. Arch Pharm Res, 2021, 44 (9/10): 839- 856. |
69 |
GRANDE G , VINCENZONI F , MILARDI D , et al. Cervical mucus proteome in endometriosis[J]. Clin Proteomics, 2017, 14, 7.
doi: 10.1186/s12014-017-9142-4 |
70 |
ONG G , LOGUE S E . Unfolding the interactions between endoplasmic reticulum stress and oxidative stress[J]. Antioxidants (Basel), 2023, 12 (5): 981.
doi: 10.3390/antiox12050981 |
71 |
ESTORNUT C , MILARA J , BAYARRI M A , et al. Targeting oxidative stress as a therapeutic approach for idiopathic pulmonary fibrosis[J]. Front Pharmacol, 2022, 12, 794997.
doi: 10.3389/fphar.2021.794997 |
72 |
GONZÁLEZ-FORURIA I , SANTULLI P , CHOUZENOUX S , et al. Dysregulation of the ADAM17/Notch signalling pathways in endometriosis: from oxidative stress to fibrosis[J]. Mol Hum Reprod, 2017, 23 (7): 488- 499.
doi: 10.1093/molehr/gax028 |
73 | WU H , XU T , CHEN T , et al. Oxidative stress mediated by the TLR4/NOX2 signalling axis is involved in polystyrene microplastic-induced uterine fibrosis in mice[J]. Sci Total Environ, 2022, 838 (Pt 2): 155825. |
74 |
ARANGIA A , MARINO Y , FUSCO R , et al. Fisetin, a natural polyphenol, ameliorates endometriosis modulating mast cells derived NLRP-3 inflammasome pathway and oxidative stress[J]. Int J Mol Sci, 2023, 24 (6): 5076.
doi: 10.3390/ijms24065076 |
75 |
BURMAN A , TANJORE H , BLACKWELL T S . Endoplasmic reticulum stress in pulmonary fibrosis[J]. Matrix Biol, 2018, 68-69, 355- 365.
doi: 10.1016/j.matbio.2018.03.015 |
76 |
WISEMAN R L , MESGARZADEH J S , HENDERSHOT L M . Reshaping endoplasmic reticulum quality control through the unfolded protein response[J]. Mol Cell, 2022, 82 (8): 1477- 1491.
doi: 10.1016/j.molcel.2022.03.025 |
77 |
ZHONG Q , ZHOU B Y , ANN D K , et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein[J]. Am J Respir Cell Mol Biol, 2011, 45 (3): 498- 509.
doi: 10.1165/rcmb.2010-0347OC |
78 |
BAEK H A , KIM D S , PARK H S , et al. Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts[J]. Am J Respir Cell Mol Biol, 2012, 46 (6): 731- 739.
doi: 10.1165/rcmb.2011-0121OC |
79 |
TANG Y , ZHOU X P , CAO T , et al. Endoplasmic reticulum stress and oxidative stress in inflammatory diseases[J]. DNA Cell Biol, 2022, 41 (11): 924- 934.
doi: 10.1089/dna.2022.0353 |
80 |
KROPSKI J A , BLACKWELL T S . Endoplasmic reticulum stress in the pathogenesis of fibrotic disease[J]. J Clin Invest, 2018, 128 (1): 64- 73.
doi: 10.1172/JCI93560 |
81 |
MOHAMED A A A , YANG D Q , LIU S Q , et al. Endoplasmic reticulum stress is involved in lipopolysaccharide-induced inflammatory response and apoptosis in goat endometrial stromal cells[J]. Mol Reprod Dev, 2019, 86 (7): 908- 921.
doi: 10.1002/mrd.23152 |
82 |
BAO M , FENG Q W , ZOU L P , et al. Endoplasmic reticulum stress promotes endometrial fibrosis through the TGF-β/SMAD pathway[J]. Reproduction, 2023, 165 (2): 171- 182.
doi: 10.1530/REP-22-0294 |
83 |
AL-HETTY H R A K , JABBAR A D , EREMIN V F , et al. The role of endoplasmic reticulum stress in endometriosis[J]. Cell Stress Chaperones, 2023, 28 (2): 145- 150.
doi: 10.1007/s12192-023-01323-2 |
84 |
BORCHERDING N , BRESTOFF J R . The power and potential of mitochondria transfer[J]. Nature, 2023, 623 (7986): 283- 291.
doi: 10.1038/s41586-023-06537-z |
85 | LI X Y , ZHANG W , CAO Q T , et al. Mitochondrial dysfunction in fibrotic diseases[J]. Cell Death Discov, 2020, 6, 80. |
86 |
ASSAF L , EID A A , NASSIF J . Role of AMPK/mTOR, mitochondria, and ROS in the pathogenesis of endometriosis[J]. Life Sci, 2022, 306, 120805.
doi: 10.1016/j.lfs.2022.120805 |
87 | SUN J , LIU C , LIU Y Y , et al. Mitophagy in renal interstitial fibrosis[J]. Int Urol Nephrol, 2024, 56 (1): 167- 179. |
88 |
KURITA Y , ARAYA J , MINAGAWA S , et al. Pirfenidone inhibits myofibroblast differentiation and lung fibrosis development during insufficient mitophagy[J]. Respir Res, 2017, 18 (1): 114.
doi: 10.1186/s12931-017-0600-3 |
[1] | Xiaoyi FENG, Peipei ZHANG, Hang ZHANG, Haisheng HAO, Weihua DU, Huabin ZHU, Kai CUI, Xueming ZHAO. Effects of Heat Stress on Epigenetic Modifications and Developmental Competence of Bovine Oocytes and Their Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2460-2473. |
[2] | Hang ZHANG, Peipei ZHANG, Baigao YANG, Xiaoyi FENG, Yifan NIU, Zhou YU, Jianhua CAO, Pengcheng WAN, Xueming ZHAO. Combination of IGF1, CoQ10 and MT Alleviated the Effects of Heat Stress on Bovine IVF Blastocysts [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2474-2485. |
[3] | Qilu ZHOU, Jinsong LIU, Chao WU, Caimei YANG, Yulan LIU, Ruiqiang ZHANG. Effects of Tannic Acid on Liver Tissue Function, Antioxidant Ability and Inflammatory Response in Lipopolysaccharide Stressed Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2519-2529. |
[4] | Ji WANG, Xinyan ZHOU, Fangrui GUO, Qiurong XU, Dongyi WU, Yan MAO, Zhihang YUAN, Jin'e YI, Lixin WEN, Jing WU. Viola yedoensis Makino Improves the Growth Performance, Meat Quality, and Gut Microbiota of Broilers Exposed to Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2761-2774. |
[5] | ZHANG Xinting, QIU Wenyue, PANG Xiaoyue, SU Yiman, YE Jiali, HUANG Jianjia, ZHOU Shuilian, TANG Zhaoxin, WANG Rongmei, SU Rongsheng. Effect of Asiatic Acid Alleviating Myocardial Injury Caused by Lipopolysaccharide through Inhibiting Oxidative Stress and Ferroptosis in Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1787-1799. |
[6] | WANG Xiao, ZHANG Hao, LUAN Qingjiang, LI Hui, YANG Ding, WANG Tingyue, TIAN Jing, ZHAO Meng, CHEN Lu, TIAN Rugang. A Comprehensive Review of the Impact of Cold and Heat Stress on the Physiological Parameters and Gene Expression in Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 894-904. |
[7] | JIANG Lijun, ZONG Yunhe, LI Yunlei, CHEN Jilan, GENG Zhaoyu, SUN Yanyan, JIN Sihua. Research Progress of Antioxidant Application in Poultry Semen Storage [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 913-923. |
[8] | WANG Xin, NIE Tong, LI Aqun, MA Jun. Hesperidin Alleviates High-fat-diet Induced Hepatic Oxidative Stress in Mice via Oxidative Phosphorylation Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1302-1313. |
[9] | HUO Yuannan, QIU Meijia, ZHANG Jiaojiao, YANG Weirong, WANG Xianzhong. Arginine and Its Metabolites Attenuate Heat Stress-induced Apoptosis of Immature Boar Sertoli Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 587-597. |
[10] | XIAO Yimei, WANG Shengnan, XU Yuewen, HE Xiaolin, YIN Fuquan. Research on the Influence of Heat Stress on Male Reproduction [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 11-21. |
[11] | CHEN Hong, RUAN Hongri, MA Tianwen, LI Yanan, MIAO Xue, YANG Wenyue, GAO Li, WEI Chengwei. The Mechanism of Puerarin Improving Cartilage Degeneration in PTOA Rats by Interfering with Oxidative Stress and Nrf2/HO-1 Pathway of Cartilage [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3951-3963. |
[12] | GAO Kangkang, YI Yanyan, ZHAO Yiteng, LIN Pengfei, CHEN Huatao, JIN Yaping. Protective Effect of Endoplasmic Reticulum Stress Preadaptation on LPS-Induced Inflammatory Response in Goat Endometrial Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3546-3556. |
[13] | ZHANG Hang, YANG Baigao, XU Xi, FENG Xiaoyi, DU Weihua, HAO Haisheng, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Research Progress on the Mechanism of Heat Stress Affecting the Development of Dairy Cow Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2692-2700. |
[14] | MAO Peng, WANG Zhihao, LI Jianji, CUI Luying, ZHU Guoqiang, MENG Xia, DONG Junsheng, WANG Heng. Research Progress of Ferroptosis in Bacterial Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2280-2287. |
[15] | WANG Zixuan, WANG Qiao, ZHANG Jin, Astrid Lissette Barreto Sánchez, ZHENG Maiqing, LI Qinghe, CUI Huanxian, AN Bingxing, ZHAO Guiping, WEN Jie, LI Hegang. Transcriptome Based Screening of Functional Genes Related to Heat Stress Resistance in Beijing You Chickens and Guangming Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1905-1914. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||