Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (6): 2313-2324.doi: 10.11843/j.issn.0366-6964.2024.06.004
• Review • Previous Articles Next Articles
Haoran SONG1,2(), Xiaoyi FENG1,2, Peipei ZHANG1, Hang ZHANG1, Yifan NIU1, Zhou YU1, Pengcheng WAN3, Kai CUI2, Xueming ZHAO1,*(
)
Received:
2023-12-11
Online:
2024-06-23
Published:
2024-06-28
Contact:
Xueming ZHAO
E-mail:1315503802@qq.com;zhaoxueming@caas.cn
CLC Number:
Haoran SONG, Xiaoyi FENG, Peipei ZHANG, Hang ZHANG, Yifan NIU, Zhou YU, Pengcheng WAN, Kai CUI, Xueming ZHAO. The Mechanism of Follicular Granulosa Cells in Follicular Development in Dairy Cows[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2313-2324.
1 | 谭金菁, 李梦雅, 刘箫仪, 等. RCEP背景下中国乳制品的市场潜力研究[J]. 上海第二工业大学学报, 2023, 40 (3): 254- 260. |
TAN J J , LI M Y , LIU X Y , et al. An analysis on market potential of Chinese dairy products under the background of RCEP[J]. Journal of Shanghai Second Polytechnic University, 2023, 40 (3): 254- 260. | |
2 | 中华人民共和国国务院. 国务院关于促进奶业持续健康发展的意见[J]. 中国乳业, 2007, (12): 3- 5. |
State Council of the People's Republic of China . Opinions of the state council on promoting the sustainable and healthy development of the dairy industry[J]. China Dairy, 2007, (12): 3- 5. | |
3 | 推进奶业振兴, 保障乳品质量安全[J]. 农经, 2018(7): 13-15. |
Promote the revitalization of the dairy industry and ensure the quality and safety of dairy products[J]. Agriculture Economics, 2018(7): 13-15. (in Chinese) | |
4 | 暴梦川. 我国民族奶业竞争力持续增强[N]. 消费日报, 2023-07-24(A01). |
PU M C. The competitiveness of China's national dairy industry continues to increase[N]. Consumption Daily, 2023-07-24(A01). (in Chinese) | |
5 |
PEÑAGARICANO F . Genomics and dairy bull fertility[J]. Vet Clin North Am Food Anim Pract, 2024, 40 (1): 185- 190.
doi: 10.1016/j.cvfa.2023.08.005 |
6 |
LUCY M C . Reproductive loss in high-producing dairy cattle: where will it end?[J]. J Dairy Sci, 2001, 84 (6): 1277- 1293.
doi: 10.3168/jds.S0022-0302(01)70158-0 |
7 | DOBSON H , SMITH R F , ROYAL M , et al. The high-producing dairy cow and its reproductive performance[J]. Reprod Domest Anim, 2007, 42 (Suppl 2): 17- 23. |
8 |
FAIR T . Mammalian oocyte development: checkpoints for competence[J]. Reprod Fertil Dev, 2010, 22 (1): 13- 20.
doi: 10.1071/RD09216 |
9 |
MAKAREVICH A V , FÖLDEŠIOVÁ M , PIVKO J , et al. Histological characteristics of ovarian follicle atresia in dairy cows with different milk production[J]. Anat Histol Embryol, 2018, 47 (6): 510- 516.
doi: 10.1111/ahe.12389 |
10 |
YIN B Y , UMAR T , MA X F , et al. MiR-193a-3p targets LGR4 to promote the inflammatory response in endometritis[J]. Int Immunopharmacol, 2021, 98, 107718.
doi: 10.1016/j.intimp.2021.107718 |
11 |
ENDO N . Possible causes and treatment strategies for the estrus and ovulation disorders in dairy cows[J]. J Reprod Dev, 2022, 68 (2): 85- 89.
doi: 10.1262/jrd.2021-125 |
12 |
ČENGIĆ B , VARATANOVIĆ N , MUTEVELIĆ T , et al. Distribution of dominant follicles in postpartum dairy cows[J]. Biotechnol Anim Husb, 2017, 33 (2): 181- 191.
doi: 10.2298/BAH1702181C |
13 | KHAN I , MESALAM A , HEO Y S , et al. Heat stress as a barrier to successful reproduction and potential alleviation strategies in cattle[J]. Animals (Basel), 2023, 13 (14): 2359. |
14 |
BABAYEV E , XU M , SHEA L D , et al. Follicle isolation methods reveal plasticity of granulosa cell steroidogenic capacity during mouse in vitro follicle growth[J]. Mol Hum Reprod, 2022, 28 (10): gaac033.
doi: 10.1093/molehr/gaac033 |
15 |
SIMON L E , KUMAR T R , DUNCAN F E . In vitro ovarian follicle growth: a comprehensive analysis of key protocol variables[J]. Biol Reprod, 2020, 103 (3): 455- 470.
doi: 10.1093/biolre/ioaa073 |
16 |
ZHANG J , DENG Y F , LI J J , et al. Theca cell-conditioned medium enhances steroidogenesis competence of buffalo (Bubalus bubalis) granulosa cells[J]. Reprod Domest Anim, 2021, 56 (2): 254- 262.
doi: 10.1111/rda.13792 |
17 |
WU G M J , CHEN A C H , YEUNG W S B , et al. Current progress on in vitro differentiation of ovarian follicles from pluripotent stem cells[J]. Front Cell Dev Biol, 2023, 11, 1166351.
doi: 10.3389/fcell.2023.1166351 |
18 |
ALBAMONTE M I , ALBAMONTE M S , BOU-KHAIR R M , et al. The ovarian germinal reserve and apoptosis-related proteins in the infant and adolescent human ovary[J]. J Ovarian Res, 2019, 12 (1): 22.
doi: 10.1186/s13048-019-0496-2 |
19 |
DIPALI S S , SUEBTHAWINKUL C , BURDETTE J E , et al. Human follicular fluid elicits select dose- and age-dependent effects on mouse oocytes and cumulus-oocyte complexes in a heterologous in vitro maturation assay[J]. Mol Hum Reprod, 2023, 29 (11): gaad039.
doi: 10.1093/molehr/gaad039 |
20 |
DOMPE C , KULUS M , STEFAŃSKA K , et al. Human granulosa cells-stemness properties, molecular cross-talk and follicular angiogenesis[J]. Cells, 2021, 10 (6): 1396.
doi: 10.3390/cells10061396 |
21 |
AZARI-DOLATABAD N , BENEDETTI C , VELEZ D A , et al. Oocyte developmental capacity is influenced by intrinsic ovarian factors in a bovine model for individual embryo production[J]. Anim Reprod Sci, 2023, 249, 107185.
doi: 10.1016/j.anireprosci.2022.107185 |
22 | COSTERMANS N G J , SOEDE N M , BLOKLAND M , et al. Steroid profile of porcine follicular fluid and blood serum: relation with follicular development[J]. Physiol Rep, 2019, 7 (24): e14320. |
23 |
PAULINO L R F M , DE ASSIS E I T , AZEVEDO V A N , et al. Why is it so difficult to have competent oocytes from in vitro cultured preantral follicles?[J]. Reprod Sci, 2022, 29 (12): 3321- 3334.
doi: 10.1007/s43032-021-00840-8 |
24 | FONTANA J , MARTINKOVÁ S , PETR J , et al. Metabolic cooperation in the ovarian follicle[J]. Physiol Res, 2020, 69 (1): 33- 48. |
25 |
EMORI C , SUGIURA K . Role of oocyte-derived paracrine factors in follicular development[J]. Anim Sci J, 2014, 85 (6): 627- 633.
doi: 10.1111/asj.12200 |
26 |
SUGIURA K , PENDOLA F L , EPPIG J J . Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism[J]. Dev Biol, 2005, 279 (1): 20- 30.
doi: 10.1016/j.ydbio.2004.11.027 |
27 |
DRUMMOND A E . The role of steroids in follicular growth[J]. Reprod Biol Endocrinol, 2006, 4, 16.
doi: 10.1186/1477-7827-4-16 |
28 |
ANDRADE G M , COLLADO M D , MEIRELLES F V , et al. Intrafollicular barriers and cellular interactions during ovarian follicle development[J]. Anim Reprod, 2019, 16 (3): 485- 496.
doi: 10.21451/1984-3143-AR2019-0051 |
29 |
STRĄCZYŃSKA P , PAPIS K , MORAWIEC E , et al. Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes[J]. Reprod Biol Endocrinol, 2022, 20 (1): 37.
doi: 10.1186/s12958-022-00906-5 |
30 |
RAMESH V , DEVI L S , JOSHI V , et al. Ovarian follicular dynamics, hormonal profiles and ovulation time in Mithun cows (Bos frontalis)[J]. Reprod Domest Anim, 2022, 57 (10): 1218- 1229.
doi: 10.1111/rda.14196 |
31 |
STRINGER J M , ALESI L R , WINSHIP A L , et al. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life[J]. Hum Reprod Update, 2023, 29 (4): 434- 456.
doi: 10.1093/humupd/dmad005 |
32 |
YANG X , MA J , MO L Y , et al. Molecular cloning and characterization of STC1 gene and its functional analyses in yak (Bos grunniens) cumulus granulosa cells[J]. Theriogenology, 2023, 208, 185- 193.
doi: 10.1016/j.theriogenology.2023.06.023 |
33 |
TU J J , CHEUNG A H H , CHAN C L K , et al. The role of microRNAs in ovarian granulosa cells in health and disease[J]. Front Endocrinol (Lausanne), 2019, 10, 174.
doi: 10.3389/fendo.2019.00174 |
34 |
MATSUDA F , INOUE N , MANABE N , et al. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells[J]. J Reprod Dev, 2012, 58 (1): 44- 50.
doi: 10.1262/jrd.2011-012 |
35 |
PLANT T M . 60 Years of Neuroendocrinology: the hypothalamo-pituitary-gonadal axis[J]. J Endocrinol, 2015, 226 (2): T41- T54.
doi: 10.1530/JOE-15-0113 |
36 |
ZHANG J , WANG H X , LU J K , et al. Granulosa cells affect in vitro maturation and subsequent parthenogenetic development of buffalo (Bubalus bubalis) oocytes[J]. Reprod Domest Anim, 2022, 57 (2): 141- 148.
doi: 10.1111/rda.13974 |
37 |
ZHANG J , SUN J M , XIAO L L , et al. Testosterone supplementation improves estrogen synthesis of buffalo (Bubalus bubalis) granulosa cells[J]. Reprod Domest Anim, 2023, 58 (11): 1628- 1635.
doi: 10.1111/rda.14467 |
38 |
BRAW-TAL R , YOSSEFI S . Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary[J]. J Reprod Fertil, 1997, 109 (1): 165- 171.
doi: 10.1530/jrf.0.1090165 |
39 |
ARAÚJO V R , GASTAL M O , FIGUEIREDO J R , et al. In vitro culture of bovine preantral follicles: a review[J]. Reprod Biol Endocrinol, 2014, 12, 78.
doi: 10.1186/1477-7827-12-78 |
40 |
ARCHILIA E C , BELLO C A P , BATALHA I M , et al. Effects of follicle-stimulating hormone, insulin-like growth factor 1, fibroblast growth factor 2, and fibroblast growth factor 9 on sirtuins expression and histone deacetylase activity in bovine granulosa cells[J]. Theriogenology, 2023, 210, 1- 8.
doi: 10.1016/j.theriogenology.2023.07.011 |
41 | GAO Y Y , ZOU Y G , WU G J , et al. Oxidative stress and mitochondrial dysfunction of granulosa cells in polycystic ovarian syndrome[J]. Front Med (Lausanne), 2023, 10, 1193749. |
42 |
ZHANG J , DENG Y F , XU J C , et al. Granulosa cell-conditioned medium enhances steroidogenic competence of buffalo (Bubalus bubalis) theca cells[J]. In Vitro Cell Dev Biol Anim, 2020, 56 (9): 799- 807.
doi: 10.1007/s11626-020-00509-7 |
43 |
YAO G D , YIN M M , LIAN J , et al. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4[J]. Mol Endocrinol, 2010, 24 (3): 540- 551.
doi: 10.1210/me.2009-0432 |
44 | KRANC W , BRĄZERT M , CELICHOWSKI P , et al. Heart development and morphogenesis' is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach[J]. Mol Med Rep, 2019, 19 (3): 1705- 1715. |
45 |
ZHAO X , DU F J , LIU X L , et al. Brain-derived neurotrophic factor (BDNF) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development[J]. Theriogenology, 2019, 130, 79- 88.
doi: 10.1016/j.theriogenology.2019.02.020 |
46 |
ALAM M H , MIYANO T . Interaction between growing oocytes and granulosa cells in vitro[J]. Reprod Med Biol, 2020, 19 (1): 13- 23.
doi: 10.1002/rmb2.12292 |
47 |
SPICER L J , SCHÜTZ L F . Effects of grape phenolics, myricetin and piceatannol, on bovine granulosa and theca cell proliferation and steroid production in vitro[J]. Food Chem Toxicol, 2022, 167, 113288.
doi: 10.1016/j.fct.2022.113288 |
48 |
WEI X L , ZHENG L P , TIAN Y P , et al. Tyrosine phosphatase SHP2 in ovarian granulosa cells balances follicular development by inhibiting PI3K/AKT signaling[J]. J Mol Cell Biol, 2022, 14 (7): mjac048.
doi: 10.1093/jmcb/mjac048 |
49 |
KASEDER M , SCHMID N , EUBLER K , et al. Evidence of a role for cAMP in mitochondrial regulation in ovarian granulosa cells[J]. Mol Hum Reprod, 2022, 28 (10): gaac030.
doi: 10.1093/molehr/gaac030 |
50 |
PAN Y , ZHU J Z , LV Q , et al. Follicle-stimulating hormone regulates glycolysis of water buffalo follicular granulosa cells through AMPK/SIRT1 signalling pathway[J]. Reprod Domest Anim, 2022, 57 (2): 185- 195.
doi: 10.1111/rda.14039 |
51 |
ZHANG L , ZHANG X X , ZHANG X J , et al. MiRNA-143 mediates the proliferative signaling pathway of FSH and regulates estradiol production[J]. J Endocrinol, 2017, 234 (1): 1- 14.
doi: 10.1530/JOE-16-0488 |
52 | HILKER R E , PAN B , ZHAN X S , et al. MicroRNA-21 enhances estradiol production by inhibiting WT1 expression in granulosa cells[J]. J Mol Endocrinol, 2021, 68 (1): 11- 22. |
53 |
TANG X R , MA L Z , GUO S , et al. High doses of FSH induce autophagy in bovine ovarian granulosa cells via the AKT/mTOR pathway[J]. Reprod Domest Anim, 2021, 56 (2): 324- 332.
doi: 10.1111/rda.13869 |
54 | 艾爱. 卵巢颗粒干细胞的研究[D]. 上海: 上海交通大学, 2017. |
AI A. Study of granulosa stem cells in the ovary[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese) | |
55 | 杨鑫宇, 贾振伟. 颗粒细胞EGF类因子信号通路在调控卵母细胞成熟和发育中的作用[J]. 遗传, 2019, 41 (2): 137- 145. |
YANG X Y , JIA Z W . The role of EGF-like factor signaling pathway in granulosa cells in regulation of oocyte maturation and development[J]. Hereditas (Beijing), 2019, 41 (2): 137- 145. | |
56 |
JOZKOWIAK M , PIOTROWSKA-KEMPISTY H , KOBYLAREK D , et al. Endocrine disrupting chemicals in polycystic ovary syndrome: the relevant role of the theca and granulosa cells in the pathogenesis of the ovarian dysfunction[J]. Cells, 2022, 12 (1): 174.
doi: 10.3390/cells12010174 |
57 |
HE Q Y , ZHANG X , YANG X J . Glutathione mitigates meiotic defects in porcine oocytes exposed to beta-cypermethrin by regulating ROS levels[J]. Toxicology, 2023, 494, 153592.
doi: 10.1016/j.tox.2023.153592 |
58 |
DE MATOS D G , FURNUS C C , MOSES D F , et al. Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro[J]. Mol Reprod Dev, 1995, 42 (4): 432- 436.
doi: 10.1002/mrd.1080420409 |
59 |
ZHANG J R , LI F X , ZHANG X Y , et al. Melatonin improves turbot oocyte meiotic maturation and antioxidant capacity, inhibits apoptosis-related genes mRNAs in vitro[J]. Antioxidants (Basel), 2023, 12 (7): 1389.
doi: 10.3390/antiox12071389 |
60 |
RICHANI D , DUNNING K R , THOMPSON J G , et al. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence[J]. Hum Reprod Update, 2021, 27 (1): 27- 47.
doi: 10.1093/humupd/dmaa043 |
61 |
CLARKE H J . Transzonal projections: essential structures mediating intercellular communication in the mammalian ovarian follicle[J]. Mol Reprod Dev, 2022, 89 (11): 509- 525.
doi: 10.1002/mrd.23645 |
62 |
CLARKE H J . Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle[J]. Wiley Interdiscip Rev Dev Biol, 2018, 7 (1): e294.
doi: 10.1002/wdev.294 |
63 |
SAEED-ZIDANE M , LINDEN L , SALILEW-WONDIM D , et al. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress[J]. PLoS One, 2017, 12 (11): e0187569.
doi: 10.1371/journal.pone.0187569 |
64 |
SALILEW-WONDIM D , GEBREMEDHN S , HOELKER M , et al. The role of micrornas in mammalian fertility: from gametogenesis to embryo implantation[J]. Int J Mol Sci, 2020, 21 (2): 585.
doi: 10.3390/ijms21020585 |
65 |
UJU C N , UNNIAPPAN S . Growth factors and female reproduction in vertebrates[J]. Mol Cell Endocrinol, 2024, 579, 112091.
doi: 10.1016/j.mce.2023.112091 |
66 |
ZAREIFARD A , BEAUDRY F , NDIAYE K . Janus Kinase 3 phosphorylation and the JAK/STAT pathway are positively modulated by follicle-stimulating hormone (FSH) in bovine granulosa cells[J]. BMC Mol Cell Biol, 2023, 24 (1): 21.
doi: 10.1186/s12860-023-00482-5 |
67 | LONG X , YANG Q Y , QIAN J J , et al. Obesity modulates cell-cell interactions during ovarian folliculogenesis[J]. iScience, 2021, 25 (1): 103627. |
68 |
RICHARDS J S , REN Y A , CANDELARIA N , et al. Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 update[J]. Endocr Rev, 2018, 39 (1): 1- 20.
doi: 10.1210/er.2017-00164 |
69 |
YOUNG J M , MCNEILLY A S . Theca: the forgotten cell of the ovarian follicle[J]. Reproduction, 2010, 140 (4): 489- 504.
doi: 10.1530/REP-10-0094 |
70 |
TAN J , ZOU Y , WU X W , et al. Increased SCF in follicular fluid and granulosa cells positively correlates with oocyte maturation, fertilization, and embryo quality in humans[J]. Reprod Sci, 2017, 24 (11): 1544- 1550.
doi: 10.1177/1933719117697125 |
71 |
PARROTT J A , VIGNE J L , CHU B Z , et al. Mesenchymal-epithelial interactions in the ovarian follicle involve keratinocyte and hepatocyte growth factor production by thecal cells and their action on granulosa cells[J]. Endocrinology, 1994, 135 (2): 569- 575.
doi: 10.1210/endo.135.2.8033804 |
72 |
PARROTT J A , SKINNER M K . Thecal cell-granulosa cell interactions involve a positive feedback loop among keratinocyte growth factor, hepatocyte growth factor, and kit ligand during ovarian follicular development[J]. Endocrinology, 1998, 139 (5): 2240- 2245.
doi: 10.1210/endo.139.5.6018 |
73 |
REGAN S L P , KNIGHT P G , YOVICH J L , et al. Granulosa cell apoptosis in the ovarian follicle-a changing view[J]. Front Endocrinol (Lausanne), 2018, 9, 61.
doi: 10.3389/fendo.2018.00061 |
74 |
LI Q Q , DU X , PAN Z X , et al. The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1[J]. Mol Cell Endocrinol, 2018, 476, 84- 95.
doi: 10.1016/j.mce.2018.04.012 |
75 |
JOZKOWIAK M , HUTCHINGS G , JANKOWSKI M , et al. The stemness of human ovarian granulosa cells and the role of resveratrol in the differentiation of MSCs-a review based on cellular and molecular knowledge[J]. Cells, 2020, 9 (6): 1418.
doi: 10.3390/cells9061418 |
76 |
SKINNER M K , SCHMIDT M , SAVENKOVA M I , et al. Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development[J]. Mol Reprod Dev, 2008, 75 (9): 1457- 1472.
doi: 10.1002/mrd.20883 |
77 |
BIGGERS J D , WHITTINGHAM D G , DONAHUE R P . The pattern of energy metabolism in the mouse oöcyte and zygote[J]. Proc Natl Acad Sci U S A, 1967, 58 (2): 560- 567.
doi: 10.1073/pnas.58.2.560 |
78 | HAUG L M , WILSON R C , GAUSTAD A H , et al. Cumulus cell and oocyte gene expression in prepubertal gilts and sows identifies cumulus cells as a prime informative parameter of oocyte quality[J]. Biology (Basel), 2023, 12 (12): 1484. |
79 |
MARTINEZ C A , RIZOS D , RODRIGUEZ-MARTINEZ H , et al. Oocyte-cumulus cells crosstalk: new comparative insights[J]. Theriogenology, 2023, 205, 87- 93.
doi: 10.1016/j.theriogenology.2023.04.009 |
80 |
RUSSELL D L , GILCHRIST R B , BROWN H M , et al. Bidirectional communication between cumulus cells and the oocyte: old hands and new players?[J]. Theriogenology, 2016, 86 (1): 62- 68.
doi: 10.1016/j.theriogenology.2016.04.019 |
81 |
RYBSKA M , KNAP S , JANKOWSKI M , et al. Characteristic of factors influencing the proper course of folliculogenesis in mammals[J]. Med J Cell Biol, 2018, 6 (1): 33- 38.
doi: 10.2478/acb-2018-0006 |
82 |
LI R , ALBERTINI D F . The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte[J]. Nat Rev Mol Cell Biol, 2013, 14 (3): 141- 152.
doi: 10.1038/nrm3531 |
83 |
JONES R L , PEPLING M E . KIT signaling regulates primordial follicle formation in the neonatal mouse ovary[J]. Dev Biol, 2013, 382 (1): 186- 197.
doi: 10.1016/j.ydbio.2013.06.030 |
84 | CHEN M H , GUO X , ZHONG Y P , et al. AMH inhibits androgen production in human theca cells[J]. J Steroid Biochem Mol Biol, 2022, 226, 106216. |
85 |
HU R , LOU Y , WANG F M , et al. Effects of recombinant human AMH on SCF expression in human granulosa cells[J]. Cell Biochem Biophys, 2013, 67 (3): 1481- 1485.
doi: 10.1007/s12013-013-9649-x |
86 |
BABAYEV E , DUNCAN F E . Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality[J]. Biol Reprod, 2022, 106 (2): 351- 365.
doi: 10.1093/biolre/ioab241 |
87 | LIU J F , CAO Y H , FENG T , et al. Expression patterns of BMP15 gene in folliculogenesis of buffalo (Bubalus bubalis)[J]. Pak J Zool, 2019, 52 (1): 37- 47. |
88 |
SAFDAR M , LIANG A X , RAJPUT S A , et al. Orexin-a regulates follicular growth, proliferation, cell cycle and apoptosis in mouse primary granulosa cells via the AKT/ERK signaling pathway[J]. Molecules, 2021, 26 (18): 5635.
doi: 10.3390/molecules26185635 |
89 |
EPPIG J J . Intercommunication between mammalian oocytes and companion somatic cells[J]. Bioessays, 1991, 13 (11): 569- 574.
doi: 10.1002/bies.950131105 |
90 |
WANG F P , TANG Y W , CAI Y J , et al. Intrafollicular retinoic acid signaling is important for luteinizing hormone-induced oocyte meiotic resumption[J]. Genes (Basel), 2023, 14 (4): 946.
doi: 10.3390/genes14040946 |
91 | CONTI M , HSIEH M , ZAMAH A M , et al. Novel signaling mechanisms in the ovary during oocyte maturation and ovulation[J]. Mol Cell Endocrinol, 2012, 356 (1/2): 65- 73. |
92 |
PEI Z L , DENG K , XU C J , et al. The molecular regulatory mechanisms of meiotic arrest and resumption in oocyte development and maturation[J]. Reprod Biol Endocrinol, 2023, 21 (1): 90.
doi: 10.1186/s12958-023-01143-0 |
93 | BERNAL-ULLOA S M , HEINZMANN J , HERRMANN D , et al. Cyclic AMP affects oocyte maturation and embryo development in prepubertal and adult cattle[J]. PLoS One, 2017, 11 (2): e0150264. |
94 |
GILCHRIST R B , LUCIANO A M , RICHANI D , et al. Oocyte maturation and quality: role of cyclic nucleotides[J]. Reproduction, 2016, 152 (5): R143- R157.
doi: 10.1530/REP-15-0606 |
95 |
JAFFE L A , EGBERT J R . Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle[J]. Annu Rev Physiol, 2017, 79, 237- 260.
doi: 10.1146/annurev-physiol-022516-034102 |
96 | WIGGLESWORTH K , LEE K B , O'BRIEN M J , et al. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes[J]. Proc Natl Acad Sci U S A, 2013, 110 (39): E3723- E3729. |
97 | FRANCIOSI F , COTICCHIO G , LODDE V , et al. Natriuretic peptide precursor c delays meiotic resumption and sustains gap junction-mediated communication in bovine cumulus-enclosed oocytes[J]. Biol Reprod, 2014, 91 (3): 61. |
98 |
ZHANG M J , SU Y Q , SUGIURA K , et al. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes[J]. Science, 2010, 330 (6002): 366- 369.
doi: 10.1126/science.1193573 |
99 |
SATO E . Intraovarian control of selective follicular growth and induction of oocyte maturation in mammals[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2015, 91 (3): 76- 91.
doi: 10.2183/pjab.91.76 |
100 |
OWEN C M , JAFFE L A . Luteinizing hormone stimulates ingression of mural granulosa cells within the mouse preovulatory follicle[J]. Biol Reprod, 2024, 110 (2): 288- 299.
doi: 10.1093/biolre/ioad142 |
101 |
DUFFY D M , KO C , JO M , et al. Ovulation: parallels with inflammatory processes[J]. Endocr Rev, 2019, 40 (2): 369- 416.
doi: 10.1210/er.2018-00075 |
102 | MARA J N , ZHOU L T , LARMORE M , et al. Ovulation and ovarian wound healing are impaired with advanced reproductive age[J]. Aging (Albany NY), 2020, 12 (10): 9686- 9713. |
103 |
KOSSOWSKA-TOMASZCZUK K , DE GEYTER C , DE GEYTER M , et al. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles[J]. Stem Cells, 2009, 27 (1): 210- 219.
doi: 10.1634/stemcells.2008-0233 |
104 |
ROVANI M T , GASPERIN B G , FERREIRA R , et al. Methods to study ovarian function in monovulatory species using the cow as a model[J]. Anim Reprod, 2017, 14 (2): 383- 391.
doi: 10.21451/1984-3143-AR832 |
105 | THAQI G , BERISHA B , PFAFFL M W . Local expression dynamics of various adipokines during induced luteal regression (Luteolysis) in the bovine corpus luteum[J]. Animals (Basel), 2023, 13 (20): 3221. |
106 |
LIU N , WANG S Y , YAO Q C , et al. Activin A attenuates apoptosis of granulosa cells in atretic follicles through ERβ-induced autophagy[J]. Reprod Domest Anim, 2022, 57 (6): 625- 634.
doi: 10.1111/rda.14103 |
107 |
XU G Q , DONG Y Y Y , WANG Z , et al. Melatonin attenuates oxidative stress-induced apoptosis of bovine ovarian granulosa cells by promoting mitophagy via SIRT1/FoxO1 signaling pathway[J]. Int J Mol Sci, 2023, 24 (16): 12854.
doi: 10.3390/ijms241612854 |
108 |
MATSUDA-MINEHATA F , INOUE N , GOTO Y , et al. The regulation of ovarian granulosa cell death by pro- and anti-apoptotic molecules[J]. J Reprod Dev, 2006, 52 (6): 695- 705.
doi: 10.1262/jrd.18069 |
109 |
DUMESIC D A , MELDRUM D R , KATZ-JAFFE M G , et al. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health[J]. Fertil Steril, 2015, 103 (2): 303- 316.
doi: 10.1016/j.fertnstert.2014.11.015 |
110 |
ZANJIRBAND M , HODAYI R , SAFAEINEJAD Z , et al. Evaluation of the p53 pathway in polycystic ovarian syndrome pathogenesis and apoptosis enhancement in human granulosa cells through transcriptome data analysis[J]. Sci Rep, 2023, 13 (1): 11648.
doi: 10.1038/s41598-023-38340-1 |
111 |
ESCOBAR M L , ECHEVERRIA O M , PALACIOS-MARTÍNEZ S , et al. Beclin 1 interacts with active caspase-3 and bax in oocytes from atretic follicles in the rat ovary[J]. J Histochem Cytochem, 2019, 67 (12): 873- 889.
doi: 10.1369/0022155419881127 |
112 | YANG W H , LIU R F , SUN Q Q , et al. Quercetin alleviates endoplasmic reticulum stress-induced apoptosis in buffalo ovarian granulosa cells[J]. Animals (Basel), 2022, 12 (6): 787. |
113 |
JOHNSON A L , BRIDGHAM J T . Caspase-mediated apoptosis in the vertebrate ovary[J]. Reproduction, 2002, 124 (1): 19- 27.
doi: 10.1530/rep.0.1240019 |
114 |
INOUE N , MATSUDA F , GOTO Y , et al. Role of cell-death ligand-receptor system of granulosa cells in selective follicular atresia in porcine ovary[J]. J Reprod Dev, 2011, 57 (2): 169- 175.
doi: 10.1262/jrd.10-198E |
115 |
KIST M , VUCIC D . Cell death pathways: intricate connections and disease implications[J]. EMBO J, 2021, 40 (5): e106700.
doi: 10.15252/embj.2020106700 |
116 | HU C F , ZHAO X Y , CUI C , et al. miRNA-29-3p targets PTEN to regulate follicular development through the PI3K/Akt/mTOR signaling pathway[J]. Theriogenology, 2023, 214, 173- 181. |
117 |
ZHOU L Y , XIE Y Q , LI S , et al. Rapamycin prevents cyclophosphamide-induced over-activation of primordial follicle pool through PI3K/Akt/mTOR signaling pathway in vivo[J]. J Ovarian Res, 2017, 10 (1): 56.
doi: 10.1186/s13048-017-0350-3 |
118 |
BOYER A , GOFF A K , BOERBOOM D . WNT signaling in ovarian follicle biology and tumorigenesis[J]. Trends Endocrinol Metab, 2010, 21 (1): 25- 32.
doi: 10.1016/j.tem.2009.08.005 |
119 |
MA L Z , ZHENG Y X , TANG X R , et al. miR-21-3p inhibits autophagy of bovine granulosa cells by targeting VEGFA via PI3K/AKT signaling[J]. Reproduction, 2019, 158 (5): 441- 452.
doi: 10.1530/REP-19-0285 |
120 |
HABARA O , LOGAN C Y , KANAI-AZUMA M , et al. WNT signaling in pre-granulosa cells is required for ovarian folliculogenesis and female fertility[J]. Development, 2021, 148 (9): dev198846.
doi: 10.1242/dev.198846 |
121 |
HAYAT R , MANZOOR M , HUSSAIN A . Wnt signaling pathway: a comprehensive review[J]. Cell Biol Int, 2022, 46 (6): 863- 877.
doi: 10.1002/cbin.11797 |
122 |
WANG H X , LI T Y , KIDDER G M . WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin[J]. Biol Reprod, 2010, 82 (5): 865- 875.
doi: 10.1095/biolreprod.109.080903 |
[1] | Xinrui ZHANG, Yu FU, Sijia MA, Zhuo YANG, Jinzhong TAO. Physiological Regulation and Feeding Management of Periparturient Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2325-2333. |
[2] | Xuanyi WANG, Yawei SUN, Yuwei LONG, Liying WANG, Yuxin ZHOU, Na LI, Xuelian MA, Hongqiong ZHAO, Gang YAO. Correlation Analysis of FOXP3, FSHR, FMR1 Gene Polymorphisms and Reproductive Hormones in Infertile Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2727-2740. |
[3] | LÜ Shiqi, ZHOU Rongyan, TIAN Shujun, CHEN Xiaoyong. Study on the Physiological Mechanism of Mitochondrial tRNA-Lys(T7719G) Gene Variation Affecting Apoptosis of Ovine Granulosa Cell [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2011-2021. |
[4] | XIU Haoyu, LI Yingjun, YUAN Kaimin, WANG Chao, YANG Shuhan, Lü Lihua, WANG Dong. Research Progress of Temperature Variation in Different Parts of Body During Estrus in Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1381-1388. |
[5] | XIANG Hui, GUI Linsen, YANG Di, WEI Shihao, GONG Yanbin, SHI Yuangang, MA Yun, DAN Xingang. Research Progress on the Estrus Synchronization-fixed-timed Artificial Insemination Technology in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1412-1422. |
[6] | SHEN Wenjuan, YANG Zhuo, ZHANG Xinrui, FU Yu, TAO Jinzhong. Research Progress of Microorganisms and Reproductive and Related Diseases in Dairy Cows Reproductive Tract [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 924-932. |
[7] | XIA Shuwen, CHEN Kunlin, SHEN Yangyang, AN Zhenjiang, ZHAO Fang, DING Qiang, ZHONG Jifeng, LIN Zhiping, WANG Huili. The Estimation of Genetic Parameters for Longevity Traits of Holstein Cows in Jiangsu Region [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1030-1039. |
[8] | PIAN Huifang, DU Xubin, LI Yan, ZHANG Yuchen, HE Hui, YU Debing. Effects of Betaine on Performance, Egg Quality and Antioxidant Capacity of Late-phase Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1085-1094. |
[9] | ZHONG Xin, ZHANG Hui, ZHANG Chong, LIU Xiaohong. Research Progress on Genetic Breeding of Reproductive Performance in Sows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 438-450. |
[10] | ZHANG Xinrui, FU Yu, YANG Zhuo, SHEN Wenjuan, TAO Jinzhong. Study of Early Pregnancy Diagnostic Proteins in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 451-460. |
[11] | ZHANG Zhifei, TANG Xueying, MIN Li, TONG Xiong, CHEN Weidong, JU Xianghong, LI Dagang. Construction of Gene Coexpression Network Related to Lactation Period and Fecundity in Liver Tissue of Holstein Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 528-539. |
[12] | LIU Yangguang, ZHANG Huibin, WEN Haoyu, XIE Fan, ZHAO Shiming, DING Yueyun, ZHENG Xianrui, YIN Zongjun, ZHANG Xiaodong. SNP/Indel Screening Analysis of Porcine Ovarian Granulosa Cells Treated with Follicular Fluid Exosomes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 576-586. |
[13] | SHI Shengjie, WANG Liguang, GAO Lei, CAI Chuanjiang, HE Weixian, CHU Guiyan. Effect of miR-24-3p on Estradiol Synthesis in Porcine Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 169-178. |
[14] | DUAN Xiangru, KANG Jia, YANG Ruochen, SHAN Xinyu, LI Taichun, ZHAO Wen, ZHANG Yingjie, LIU Yueqin. Effect of L-cysteine on Proliferation, Apoptosis and the Secretion of Steroid Hormone in Ovine Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 179-191. |
[15] | RU Meng, ZENG Wenhui, PENG Jianling, ZENG Qingjie, YIN Chao, CUI Yong, WEI Qing, LIANG Haiping, XIE Xianhua, HUANG Jianzhen. Research Progress on Follicles Development of Hens and Its Epigenetic Regulatory Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3613-3622. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||