Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (9): 2867-2876.doi: 10.11843/j.issn.0366-6964.2022.09.005
• REVIEW • Previous Articles Next Articles
FENG Xin1,2,3, WANG Mingshu1,2,3*, CHENG Anchun1,2,3
Received:
2021-12-14
Online:
2022-09-23
Published:
2022-09-23
CLC Number:
FENG Xin, WANG Mingshu, CHENG Anchun. The Role of Alpha Herpesvirus Envelope Glycoprotein C on Virus Infection and Replication[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2867-2876.
[1] | MCGEOCH D J, RIXON F J, DAVISON A J. Topics in herpesvirus genomics and evolution[J]. Virus Res, 2006, 117(1):90-104. |
[2] | METTENLEITER T C, KLUPP B G, GRANZOW H. Herpesvirus assembly:a tale of two membranes[J]. Curr Opin Microbiol, 2006, 9(4):423-429. |
[3] | LAQUERRE S, ARGNANI R, ANDERSON D B, et al. Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread[J]. J Virol, 1998, 72(7):6119-6130. |
[4] | FEYZI E, TRYBALA E, BERGSTRÖM T, et al. Structural requirement of heparan sulfate for interaction with herpes simplex virus type 1 virions and isolated glycoprotein C[J]. J Biol Chem, 1997, 272(40):24850-24857. |
[5] | THUREEN D R, KEELER C L JR. Psittacid herpesvirus 1 and infectious laryngotracheitis virus:Comparative genome sequence analysis of two avian alphaherpesviruses[J]. J Virol, 2006, 80(16):7863-7872. |
[6] | TRYBALA E, ROTH A, JOHANSSON M, et al. Glycosaminoglycan-binding ability is a feature of wild-type strains of herpes simplex virus Type 1[J]. Virology, 2002, 302(2):413-419. |
[7] | DAVISON A J. Evolution of sexually transmitted and sexually transmissible human herpesviruses[J]. Ann NY Acad Sci, 2011, 1230(1):E37-E49. |
[8] | SCHWYZER M, ACKERMANN M. Molecular virology of ruminant herpesviruses[J]. Vet Microbiol, 1996, 53(1-2):17-29. |
[9] | KLUPP B G, HENGARTNER C J, METTENLEITER T C, et al. Complete, annotated sequence of the pseudorabies virus genome[J]. J Virol, 2004, 78(1):424-440. |
[10] | TULMAN E R, AFONSO C L, LU Z, et al. The genome of a very virulent Marek's disease virus[J]. J Virol, 2000, 74(17):7980-7988. |
[11] | YING W, CHENG A C, WANG M S, et al. Comparative genomic analysis of duck enteritis virus strains[J]. J Virol, 2012, 86(24):13841-13842. |
[12] | TAI S H S, NIIKURA M, CHENG H H, et al. Complete genomic sequence and an infectious BAC clone of feline herpesvirus-1 (FHV-1)[J]. Virology, 2010, 401(2):215-227. |
[13] | DAVISON A J, SCOTT J E. The complete DNA sequence of varicella-zoster virus[J]. J Gen Virol, 1986, 67(Pt 9):1759-1816. |
[14] | TAL-SINGER R, PENG C, PONCE DE LEON M, et al. Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules[J]. J Virol, 1995, 69(7):4471-4483. |
[15] | SEDLACKOVA L, PERKINS K D, MEYER J, et al. Identification of an ICP27-responsive element in the coding region of a herpes simplex virus type 1 late gene[J]. J Virol, 2010, 84(6):2707-2718. |
[16] | SARRAZIN S, LAMANNA W C, ESKO J D. Heparan sulfate proteoglycans[J]. Cold Spring Harb Perspect Biol, 2011, 3(7):a004952. |
[17] | HEROLD B C, VISALLI R J, SUSMARSKI N, et al. Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B[J]. J Gen Viroly1994, 75(Pt 6):1211-1222. |
[18] | LEMBO D, DONALISIO M, LAINE C, et al. Auto-associative heparin nanoassemblies:a biomimetic platform against the heparan sulfate-dependent viruses HSV-1, HSV-2, HPV-16 and RSV[J]. Eur J Pharmaceut Biopharmaceut, 2014, 88(1):275-282. |
[19] | IMAMURA J, SUZUKI Y, GONDA K, et al. Single particle tracking confirms that multivalent Tat protein transduction domain-induced heparan sulfate proteoglycan cross-linkage activates Rac1 for internalization[J]. J Biol Chem, 2011, 286(12):10581-10592. |
[20] | SHUKLA D, SPEAR P G. Herpesviruses and heparan sulfate:an intimate relationship in aid of viral entry[J]. J Clin Invest, 2001, 108(4):503-510. |
[21] | WIRTZ L, MÖCKEL M, KNEBEL-MÖRSDORF D. Invasion of herpes simplex Virus 1 into murine dermis:role of Nectin-1 and herpesvirus entry mediator as cellular receptors during aging[J]. J Virol, 2020, 94(5):e02046-19. |
[22] | MONTGOMERY R I, WARNER M S, LUM B J, et al. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family[J]. Cell, 1996, 87(3):427-436. |
[23] | EISENBERG R J, ATANASIU D, CAIRNS T M, et al. Herpes virus fusion and entry:a story with many characters[J]. Viruses, 2012, 4(5):800-832. |
[24] | HEROLD B C, WUDUNN D, SOLTYS N, et al. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity[J]. J Virol, 1991, 65(3):1090-1098. |
[25] | AZAB W, TSUJIMURA K, MAEDA K, et al. Glycoprotein C of equine herpesvirus 4 plays a role in viral binding to cell surface heparan sulfate[J]. Virus Res, 2010, 151(1):1-9. |
[26] | RUE C A, RYAN P. A role for glycoprotein C in pseudorabies virus entry that is independent of virus attachment to heparan sulfate and which involves the actin cytoskeleton[J]. Virology, 2003, 307(1):12-21. |
[27] | HU Y, LIU X K, ZOU Z, et al. Glycoprotein C plays a role in the adsorption of duck enteritis virus to chicken embryo fibroblasts cells and in infectivity[J]. Virus Res, 2013, 174(1-2):1-7. |
[28] | KINGSLEY D H, KEELER C L JR. Infectious laryngotracheitis virus, an alpha herpesvirus that does not interact with cell surface heparan sulfate[J]. Virology, 1999, 256(2):213-219. |
[29] | MÅRDBERG K, NYSTRÖM K, TARP M A, et al. Basic amino acids as modulators of an O-linked glycosylation signal of the herpes simplex virus type 1 glycoprotein gC:functional roles in viral infectivity[J]. Glycobiology, 2004, 14(7):571-581. |
[30] | RUX A H, MOORE W T, LAMBRIS J D, et al. Disulfide bond structure determination and biochemical analysis of glycoprotein C from herpes simplex virus[J]. J Virol, 1996, 70(8):5455-5465. |
[31] | MåRDBERG K, TRYBALA E, GLORIOSO J C, et al. Mutational analysis of the major heparan sulfate-binding domain of herpes simplex virus type 1 glycoprotein C[J]. J Gen Virol, 2001, 82(8):1941-1950. |
[32] | FLYNN S J, RYAN P. The receptor-binding domain of pseudorabies virus glycoprotein gC is composed of multiple discrete units that are functionally redundant[J]. J Virol, 1996, 70(3):1355-1364. |
[33] | JENTOFT N. Why are proteins O-glycosylated?[J]. Trends Biochem Sci, 1990, 15(8):291-294. |
[34] | DELGUSTE M, PEERBOOM N, LE BRUN G, et al. Regulatory mechanisms of the mucin-like region on herpes simplex virus during cellular attachment[J]. ACS Chem Biol, 2019, 14(3):534-542. |
[35] | NICOLA A V, HOU J, MAJOR E O, et al. Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway[J]. J Virol, 2005, 79(12):7609-7616. |
[36] | NICOLA A V, MCEVOY A M, STRAUS S E. Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells[J]. J Virol, 2003, 77(9):5324-5332. |
[37] | SARI T K, GIANOPULOS K A, WEED D J, et al. Herpes simplex virus glycoprotein C regulates Low-pH entry[J]. mSphere, 2020, 5(1):e00826-19. |
[38] | WEED D J, DOLLERY S J, KOMALA SARI T, et al. Acidic pH mediates changes in antigenic and oligomeric conformation of herpes simplex virus gB and is a determinant of cell-specific entry[J]. J Virol, 2018, 92(17):e01034-18. |
[39] | WEED D J, PRITCHARD S M, GONZALEZ F, et al. Mildly acidic pH triggers an irreversible conformational change in the fusion domain of herpes simplex virus 1 glycoprotein B and inactivation of viral entry[J]. J Virol, 2017, 91(5):e02123-16. |
[40] | DOLLERY S J, DELBOY M G, NICOLA A V. Low pH-induced conformational change in herpes simplex virus glycoprotein B[J]. J Virol, 2010, 84(8):3759-3766. |
[41] | JAROSINSKI K W, MARGULIS N G, KAMIL J P, et al. Horizontal transmission of Marek's disease virus requires US2, the UL13 protein kinase, and gC[J]. J Virol, 2007, 81(19):10575-10587. |
[42] | JAROSINSKI K W, OSTERRIEDER N. Further analysis of Marek's disease virus horizontal transmission confirms that UL44 (gC) and UL13 protein kinase activity are essential, while US2 is nonessential[J]. J Virol, 2010, 84(15):7911-7916. |
[43] | CHUARD A, COURVOISIER-GUYADER K, RÉMY S, et al. The tegument protein pUL47 of Marek's disease virus is necessary for horizontal transmission and is important for expression of glycoprotein gC[J]. J Virol, 2020, 95(2):e01645-20. |
[44] | JAROSINSKI K W, OSTERRIEDER N. Marek's disease virus expresses multiple UL44 (gC) variants through mRNA splicing that are all required for efficient horizontal transmission[J]. J Virol, 2012, 86(15):7896-7906. |
[45] | HARDY W R, SANDRI-GOLDIN R M. Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect[J]. J Virol, 1994, 68(12):7790-7799. |
[46] | PONNURAJ N, TIEN Y T, VEGA-RODRIGUEZ W, et al. The herpesviridae conserved multifunctional infected-cell protein 27 (ICP27) is important but not required for replication and oncogenicity of Marek's disease alphaherpesvirus[J]. J Virol, 2019, 93(4):e01903-18. |
[47] | VEGA-RODRIGUEZ W, XU H, PONNURAJ N, et al. The requirement of glycoprotein C (gC) for interindividual spread is a conserved function of gC for avian herpesviruses[J]. Sci Rep, 2021, 11(1):7753. |
[48] | VEGA-RODRIGUEZ W, PONNURAJ N, GARCIA M, et al. The requirement of glycoprotein c for interindividual spread is functionally conserved within the alphaherpesvirus genus (Mardivirus), but Not the Host (Gallid)[J]. Viruses, 2021, 13(8):1419. |
[49] | LUBINSKI J M, WANG L Y, SOULIKA A M, et al. Herpes simplex virus type 1 glycoprotein gC mediates immune evasion in vivo[J]. J Virol, 1998, 72(10):8257-8263. |
[50] | FRIEDMAN H M, COHEN G H, EISENBERG R J, et al. Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells[J]. Nature, 1984, 309(5969):633-635. |
[51] | HARRISON R A. The properdin pathway:an "alternative activation pathway" or a "critical amplification loop" for C3 and C5 activation?[J]. Semin Immunopathol, 2018, 40(1):15-35. |
[52] | NILSSON B, EKDAHL K N. The tick-over theory revisited:is C3 a contact-activated protein?[J]. Immunobiology, 2012, 217(11):1106-1110. |
[53] | MERLE N S, CHURCH S E, FREMEAUX-BACCHI V, et al. Complement system Part I-molecular mechanisms of activation and regulation[J]. Front Immunol, 2015, 6:262. |
[54] | ARBORE G, KEMPER C, KOLEV M. Intracellular complement-the complosome-in immune cell regulation[J]. Mol Immunol, 2017, 89:2-9. |
[55] | RICKLIN D, REIS E S, LAMBRIS J D. Complement in disease:a defence system turning offensive[J]. Nat Rev Nephrol, 2016, 12(7):383-401. |
[56] | DEMPSEY P W, ALLISON M E, AKKARAJU S, et al. C3 d of complement as a molecular adjuvant:bridging innate and acquired immunity[J]. Science, 1996, 271(5247):348-350. |
[57] | MAYILYAN K R. Complement genetics, deficiencies, and disease associations[J]. Protein Cell, 2012, 3(7):487-496. |
[58] | FRIES L F, FRIEDMAN H M, COHEN G H, et al. Glycoprotein C of Herpes simplex virus 1 is an inhibitor of the complement cascade[J]. J Immunol, 1986, 137(5):1636-1641. |
[59] | KOSTAVASILI I, SAHU A, FRIEDMAN H M, et al. Mechanism of complement inactivation by glycoprotein C of herpes simplex virus[J]. J Immunol, 1997, 158(4):1763-1771. |
[60] | FRIEDMAN H M, WANG L, FISHMAN N O, et al. Immune evasion properties of herpes simplex virus type 1 glycoprotein gC[J]. J Virol, 1996, 70(7):4253-4260. |
[61] | LUBINSKI J, WANG L Y, MASTELLOS D, et al. In vivo role of complement-interacting domains of herpes simplex virus type 1 glycoprotein gC[J]. J Exp Med, 1999, 190(11):1637-1646. |
[62] | TAL-SINGER R, SEIDEL-DUGAN C, FRIES L, et al. Herpes simplex virus glycoprotein C is a receptor for complement component iC3b[J]. J Infect Dis, 1991, 164(4):750-753. |
[63] | HUEMER H P, LARCHER C, COE N E. Pseudorabies virus glycoprotein III derived from virions and infected cells binds to the third component of complement[J]. Virus Res, 1992, 23(3):271-280. |
[64] | HUEMER H P, NOWOTNY N, CRABB B S, et al. gp13 (EHV-gC):a complement receptor induced by equine herpesviruses[J]. Virus Res, 1995, 37(2):113-126. |
[65] | HUNG S L, PENG C R L N, KOSTAVASILI I, et al. The interaction of glycoprotein C of herpes simplex virus types 1 and 2 with the alternative complement pathway[J]. Virology, 1994, 203(2):299-312. |
[66] | AWASTHI S, BALLIET J W, FLYNN J A, et al. Protection provided by a herpes simplex virus 2 (HSV-2) glycoprotein C and D subunit antigen vaccine against genital HSV-2 infection in HSV-1-seropositive guinea pigs[J]. J Virol, 2014, 88(4):2000-2010. |
[67] | AWASTHI S, MAHAIRAS G G, SHAW C E, et al. A dual-modality herpes simplex virus 2 vaccine for preventing genital herpes by using glycoprotein C and D subunit antigens to induce potent antibody responses and adenovirus vectors containing capsid and tegument proteins as T Cell immunogens[J]. J Virol, 2015, 89(16):8497-8509. |
[68] | AWASTHI S, HOOK L M, SHAW C E, et al. A trivalent subunit antigen glycoprotein vaccine as immunotherapy for genital herpes in the guinea pig genital infection model[J]. Hum Vacc Immun, 2017, 13(12):2785-2793. |
[69] | AWASTHI S, HOOK L M, PARDI N, et al. Nucleoside-modified mRNA encoding HSV-2 glycoproteins C, D, and E prevents clinical and subclinical genital herpes[J]. Sci Immunol, 2019, 4(39):eaaw7083. |
[70] | EGAN K, HOOK L M, NAUGHTON A, et al. Herpes simplex virus type 2 trivalent protein vaccine containing glycoproteins C, D and E protects guinea pigs against HSV-1 genital infection[J]. Hum Vacc Immun, 2020, 16(9):2109-2113. |
[71] | LUBINSKI J M, LAZEAR H M, AWASTHI S, et al. The herpes simplex virus 1 IgG fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo[J]. J Virol, 2011, 85(7):3239-3249. |
[72] | SARI T K, GIANOPULOS K A, NICOLA A V. Glycoprotein C of herpes simplex Virus 1 shields glycoprotein B from antibody neutralization[J]. J Virol, 2020, 94(5):e01852-19. |
[73] | HELDWEIN E E, LOU H, BENDER F C, et al. Crystal structure of glycoprotein B from herpes simplex virus 1[J]. Science, 2006, 313(5784):217-220. |
[74] | COOPER R S, HELDWEIN E E. Herpesvirus gB:a finely tuned fusion machine[J]. Viruses, 2015, 7(12):6552-6569. |
[75] | AWASTHI S, LUBINSKI J M, FRIEDMAN H M. Immunization with HSV-1 glycoprotein C prevents immune evasion from complement and enhances the efficacy of an HSV-1 glycoprotein D subunit vaccine[J]. Vaccine, 2009, 27(49):6845-6853. |
[76] | AWASTHI S, LUBINSKI J M, SHAW C E, et al. Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C (gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone[J]. J Virol, 2011, 85(20):10472-10486. |
[77] | HOOK L M, HUANG J L, JIANG M, et al. Blocking antibody access to neutralizing domains on glycoproteins involved in entry as a novel mechanism of immune evasion by herpes simplex virus type 1 glycoproteins C and E[J]. J Virol, 2008, 82(14):6935-6941. |
[78] | METTENLEITER T C, ZSAK L, ZUCKERMANN F, et al. Interaction of glycoprotein gIII with a cellular heparinlike substance mediates adsorption of pseudorabies virus[J]. J Virol, 1990, 64(1):278-286. |
[79] | OKAZAKI K, MATSUZAKI T, SUGAHARA Y, et al. BHV-1 adsorption is mediated by the interaction of glycoprotein gIII with heparinlike moiety on the cell surface[J]. Virology, 1991, 181(2):666-670. |
[80] | OSTERRIEDER N. Construction and characterization of an equine herpesvirus 1 glycoprotein C negative mutant[J]. Virus Res, 1999, 59(2):165-177. |
[81] | MAEDA K, HAYASHI S, TANIOKA Y, et al. Pseudorabies virus (PRV) is protected from complement attack by cellular factors and glycoprotein C (gC)[J]. Virus Res, 2002, 84(1-2):79-87. |
[82] | HIDAKA Y, SAKAI Y, TOH Y, et al. Glycoprotein C of herpes simplex virus type 1 is essential for the virus to evade antibody-independent complement-mediated virus inactivation and lysis of virus-infected cells[J]. J Gen Virol, 1991, 72(Pt 4):915-921. |
[83] | MACLEOD D T, NAKATSUJI T, YAMASAKI K, et al. HSV-1 exploits the innate immune scavenger receptor MARCO to enhance epithelial adsorption and infection[J]. Nat Commun, 2013, 4:1963. |
[84] | GONZÁLEZ-MOTOS V, JVRGENS C, RITTER B, et al. Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration[J]. PLoS Pathog, 2017, 13(5):e1006346. |
[85] | MAEDA K, HORIMOTO T, MIKAMI T. Properties and functions of feline herpesvirus type 1 glycoproteins[J]. J Vet Med Sci, 1998, 60(8):881-888. |
[86] | TRYBALA E, SVENNERHOLM B, BERGSTRÖM T, et al. Herpes simplex virus type 1-induced hemagglutination:glycoprotein C mediates virus binding to erythrocyte surface heparan sulfate[J]. J Virol, 1993, 67(3):1278-1285. |
[87] | OKAZAKI K, KANNO T, KIRIYA S, et al. Hemadsorptive activity of transfected COS-7 cells expressing BHV-1 glycoprotein gIII[J]. Virology, 1993, 193(2):1024-1027. |
[88] | YAMADA S, IMADA T, SHIMIZU M, et al. A mutant of pseudorabies virus with deletion of glycoprotein gIII gene prepared from a Japanese isolate:it fails to agglutinate mouse erythrocytes[J]. Vet Microbiol, 1995, 45(2-3):233-242. |
[89] | ANDOH K, HATTORI S, MAHMOUD H Y A H, et al. The haemagglutination activity of equine herpesvirus type 1 glycoprotein C[J]. Virus Res, 2015, 195:172-176. |
[1] | YANG Xiaofeng, QIN Xiaowei, LÜ Lihua. Protective Effect of a Derivative of MNQ Against LPS-Induced Inflammatory Injury in Bovine Ovarian Follicular Granulosa Cells in Vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2032-2041. |
[2] | WU Shangjie, LUAN Yuanyuan, WANG Mingkun, ZHANG Hechun, YU Bo, MA Yuehui, JIANG Lin, HE Xiaohong. Advances of Disease-Resistant Breeding on Ovine Brucellosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 882-893. |
[3] | LIU Hongyi, LUO Tingyu, LI Changwen, YU Haibo, LU Xiaoye, CHEN Hongyan, XIA Changyou, GAO Caixia. Identification of SLA-1 Alleles and Analysis of Molecular Genetic Characteristics in Rongchang Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 3064-3077. |
[4] | LONG Qinqin, WEI Min, WANG Yuting, WEN Ming, PANG Feng. The Battle between Orf Virus and Host: Immune Response and Viral Immune Evasion Mechanisms [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1845-1853. |
[5] | HU Ying, ZHOU Xiaorong, HUANG Jinxiu, YANG Feiyun, LI Jing, TANG Chaohua, ZHAO Qingyu, YANG Youyou, ZHANG Kai, ZHANG Junmin. Research on the Differences of Carcass Traits, Meat Quality and Flavor Substances between Rongchang and Duroc×Landrace×Yorkshire Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1877-1892. |
[6] | WANG Zixuan, WANG Qiao, ZHANG Jin, Astrid Lissette Barreto Sánchez, ZHENG Maiqing, LI Qinghe, CUI Huanxian, AN Bingxing, ZHAO Guiping, WEN Jie, LI Hegang. Transcriptome Based Screening of Functional Genes Related to Heat Stress Resistance in Beijing You Chickens and Guangming Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1905-1914. |
[7] | YANG Anqi, LI Jiacheng, SONG Ying, CHEN Xin, JIN Rongshuai, ZHAO Bohao, WU Xinsheng, CHEN Yang. Effects of CYP19A1 on Proliferation and Apoptosis of Rabbit Ovary Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4209-4219. |
[8] | WU Pingxian, CHEN Li, LONG Xi, CHAI Jie, ZHANG Tinghuan, XU Shunlai, GUO Zongyi, WANG Jinyong. Genome-wide Association Studies for Reproductive Traits at First Farrowing in Rongchang Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 103-112. |
[9] | LI Xiaobo, LIU Zhanfa, LIU Yue, CHEN Qian, MA Yuehui, ZHAO Qianjun, YE Shaohui. Mining Genes Related to Wool Bending of Zhongwei Goat Based on WGCNA and GSEA [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2930-2943. |
[10] | WANG Yang, CUI Shuai, XIN Ting, WANG Xixi, YU Hainan, CHEN Shiyu, JIANG Yajun, GAO Xintao, PANG Zhongbao, JIANG Yitong, GUO Xiaoyu, JIA Hong, ZHU Hongfei. ASFV MGF360-14L Interacts with MAVS and Inhibit the Expression of Type Ⅰ Interferon [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3272-3278. |
[11] | YUAN Jiao, XU Guoqiang, ZHOU Xiang, XU Sanping, LI Sheng, LI Wangming, LIU Bang. SNP Chip-Based Monitoring of Population Conservation Effect of Tongcheng Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2514-2523. |
[12] | ZHAO Di, KANG Huimin, TAN Xiaodong, LIU Ranran, ZHANG Zhengfen, LI Hua, ZHAO Guiping. Screening of Candidate Genes for Carcass Traits of Tiannong Partridge Chicken Using Weighted Gene Co-expression Network Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2130-2140. |
[13] | WU Xuemin, CHEN Rujing, CHEN Qiuyong, CHE Yongliang, YAN Shan, LIU Yutao, ZHOU Lunjiang, WANG Longbai. Establishment and Preliminary Application of Indirect ELISA for Detection of Variant Pseudorabies Virus gC Antibody [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 2029-2034. |
[14] | LIU Tong, YANG Youyou, LIU Dapeng, YU Simeng, GUO Zhanbao, HU Jian, ZHAO Jinshan, ZHOU Zhengkui, HOU Shuisheng. Identification of Specific Volatile Flavor Compounds in Breast Muscle of Meat Duck [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 402-413. |
[15] | REN Man, LIU Xin, TANG Yulin, ZHANG Ruixue, QIN Junjie, ZHU Hao, GUO Yansheng. Regulation of Guiqiyimu Compound Preparation on Rumen Microbes and Short-chain Fatty Acids in Postpartum Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4461-4469. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||