Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (8): 2773-2781.doi: 10.11843/j.issn.0366-6964.2022.08.034
• CLINICAL VETERINARY MEDICINE • Previous Articles Next Articles
ZHAO Xin1, WANG Ying1, LI Chunting1, WANG Wei1, SANG Rui1, LI Haitao1,2*, ZHANG Xuemei1*
Received:
2021-11-24
Online:
2022-08-23
Published:
2022-08-23
CLC Number:
ZHAO Xin, WANG Ying, LI Chunting, WANG Wei, SANG Rui, LI Haitao, ZHANG Xuemei. Alleviating Effect and Mechanism of Dandelion Extract on LPS-Induced Mastitis in Mice[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2773-2781.
[1] | YU S, LIU X S B J, YU D, et al. Morin protects LPS-induced mastitis via inhibiting NLRP3 inflammasome and NF-κB signaling pathways[J]. Inflammation, 2020, 43(4):1293-1303. |
[2] | RUEGG P L. A 100-Year Review:Mastitis detection, management, and prevention[J]. J Dairy Sci, 2017, 100(12):10381-10397. |
[3] | TAKEUCHI O, HOSHINO K, KAWAI T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components[J]. Immunity, 1999, 11(4):443-451. |
[4] | CHANDLER R L. Experimental bacterial mastitis in the mouse[J]. J Med Microbiol, 1970, 3(2):273-282. |
[5] | DOEHRING C, SUNDRUM A. The informative value of an overview on antibiotic consumption, treatment efficacy and cost of clinical mastitis at farm level[J]. Prev Vet Med, 2019, 165:63-70. |
[6] | LI J W, LUO J Y, CHAI Y Y, et al. Hypoglycemic effect of Taraxacum officinale root extract and its synergism with Radix Astragali extract[J]. Food Sci Nutr, 2021, 9(4):2075-2085. |
[7] | DUAN X F, PAN L M, DENG Y Y, et al. Dandelion root extract affects ESCC progression via regulating multiple signal pathways[J]. Food Funct, 2021, 12(19):9486-9502. |
[8] | LIU L B, XIONG H Z, PING J Q, et al. Taraxacum officinale protects against lipopolysaccharide-induced acute lung injury in mice[J]. J Ethnopharmacol, 2010, 130(2):392-397. |
[9] | GE B J, ZHAO P, LI H T, et al. Taraxacum mongolicum protects against Staphylococcus aureus-infected mastitis by exerting anti-inflammatory role via TLR2-NF-κB/MAPKs pathways in mice[J]. J Ethnopharmacol, 2021, 268:113595. |
[10] | WANG X C, FENG S B, DING N N, et al. Anti-Inflammatory effects of berberine hydrochloride in an LPS-induced murine model of mastitis[J]. Evid Based Complement Alternat Med, 2018, 2018:5164314. |
[11] | SHAO G X, TIAN Y G, WANG H Y, et al. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice[J]. Int Immunopharmacol, 2015, 29(2):263-268. |
[12] | 刘利本. 蒲公英提取物对LPS所致小鼠急性肺损伤的保护作用研究[D]. 延吉:延边大学, 2011.LIU L B. Study on protective effect of extract of dandelion on acute lung injury induced by lipopolysaccharide in mice[D]. Yanji:Yanbian University, 2011. (in Chinese) |
[13] | 楚爱景, 程旭锋, 赵慧朵, 等. 蒲公英甾醇对脂多糖诱导乳腺炎大鼠的抗炎作用及其机制[J]. 东南大学学报:医学版, 2019, 38(2):303-308.CHU A J, CHENG X F, ZHAO H D, et al. Anti-inflammatory effects and mechanisms of taraxasterol on lipopolysaccharide-induced mastitis in rats[J]. Journal of Southeast University:Medical Science Edition, 2019, 38(2):303-308. (in Chinese) |
[14] | 李景华, 刘玉芹, 王黎明. 蒲公英属植物研究进展[J]. 吉林医药学院学报, 2011, 32(3):160-166.LI J H, LIU Y Q, WANG L M. Research progress on genus Taraxacum plants[J]. Journal of Jilin Medical College, 2011, 32(3):160-166. (in Chinese) |
[15] | GONG Q, LI Y W, MA H, et al. Peiminine protects against lipopolysaccharide-induced mastitis by inhibiting the AKT/NF-κB, ERK1/2 and p38 signaling pathways[J]. Int J Mol Sci, 2018, 19(9):2637. |
[16] | YANG Z T, YIN R L, CONG Y F, et al. Oxymatrine lightened the inflammatory response of LPS-induced mastitis in mice through affecting NF-κB and MAPKs signaling pathways[J]. Inflammation, 2014, 37(6):2047-2055. |
[17] | WANG G, SUN B, GAO Y, et al. The effect of emodin-assisted early enteral nutrition on severe acute pancreatitis and secondary hepatic injury[J]. Mediators Inflamm, 2007, 2007:29638. |
[18] | WALLER K P, COLDITZ I G, LUN S, et al. Cytokines in mammary lymph and milk during endotoxin-induced bovine mastitis[J]. Res Vet Sci, 2003, 74(1):31-36. |
[19] | LAKOTA K, CARNS M, PODLUSKY S, et al. Serum amyloid A is a marker for pulmonary involvement in systemic sclerosis[J]. PLoS One, 2015, 10(1):e0110820. |
[20] | 徐乔璐. 山羊白介素-1β启动子及牛β酪蛋白增强子黄色葡萄球菌诱导活性分析[D]. 杨凌:西北农林科技大学, 2017.XU Q L. Staphylococcus aureus induction of goatinterleukin-1 beta promoter and bovine β-casein enhancer[D]. Yangling:Northwest A&F University, 2017. (in Chinese) |
[21] | NAKAJIMA Y, MIKAMI O, YOSHIOKA M, et al. Elevated levels of tumor necrosis factor-α, (TNF-α) and interleukin-6 (IL-6) activities in the sera and milk of cows with naturally occurring coliform mastitis[J]. Res Vet Sci, 1997, 62(3):297-298. |
[22] | GAO X J, GUO M Y, ZHANG Z C, et al. Bergenin plays an anti-inflammatory role via the modulation of MAPK and NF-κB signaling pathways in a mouse model of LPS-induced mastitis[J]. Inflammation, 2015, 38(3):1142-1150. |
[23] | LIU Q, ZHAO H, GAO Y, et al. Effects of dandelion extract on the proliferation of rat skeletal muscle cells and the inhibition of a lipopolysaccharide-induced inflammatory reaction[J]. Chin Med J (Engl), 2018, 131(14):1724-1731. |
[24] | 解颖颖. 芹菜素、针刺对LPS诱导的SD大鼠乳腺炎的抗炎效果及其机制研究[D]. 哈尔滨:东北农业大学, 2017.XIE Y Y. The anti-inflammatory effects and molecular mechanism of apigenin and acupuncture on lipopolysacchride-induced mastitis in lactating SD rats[D]. Harbin:Northeast Agricultural University, 2017. (in Chinese) |
[25] | 唐 鑫. 藤黄酸对LPS诱导的小鼠乳腺炎的作用及机制研究[D]. 武汉:华中农业大学, 2020.TANG X. Effect and mechanism of gambogic acid on LPS-induced mastitis in mice[D]. Wuhan:Huazhong Agricultural University, 2020. (in Chinese) |
[26] | 欧爱群. 蜂胶对细菌脂多糖诱导乳腺炎保护作用的研究[D]. 福州:福建农林大学, 2020.OU A Q. Protective effects of propolis against bacterial lipopolysaccharide-induced mastitis[D]. Fuzhou:Fujian Agriculture and Forestry University, 2020. (in Chinese) |
[27] | NAGAI Y, AKASHI S, NAGAFUKU M, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution[J]. Nat Immunol, 2002, 3(7):667-672. |
[28] | ZHOU E S, FU Y H, WEI Z K, et al. Cepharanthine attenuates lipopolysaccharide-induced mice mastitis by suppressing the NF-κB signaling pathway[J]. Inflammation, 2014, 37(2):331-337. |
[29] | WU J, LI L, SUN Y, et al. Altered molecular expression of the TLR4/NF-κB signaling pathway in mammary tissue of Chinese Holstein cattle with mastitis[J]. PLoS One, 2015, 10(2):e0118458. |
[30] | FU Y H, GAO R F, CAO Y G, et al. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice[J]. Int Immunopharmacol, 2014, 20(1):54-58. |
[31] | CHEN X X, ZHENG X T, ZHANG M, et al. Nuciferine alleviates LPS-induced mastitis in mice via suppressing the TLR4-NF-κB signaling pathway[J]. Inflamm Res, 2018, 67(11-12):903-911. |
[32] | BURGERMEISTER E, SEGER R. PPARgamma and MEK interactions in cancer[J]. PPAR Res, 2008, 2008:309469. |
[33] | CARGNELLO M, ROUX P P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases[J]. Microbiol Mol Biol Rev, 2011, 75(1):50-83. |
[34] | 张宗峰, 王红丽, 时小丁, 等. 表皮生长因子受体通过MAPK/ERK信号通路调节基质金属蛋白酶1表达的研究[J]. 国际免疫学杂志, 2015, 38(6):517-521.ZHANG Z F, WANG H L, SHI X D, et al. Epidermal growth factor receptor mediates matrix metalloproteinase 1 expression in SiHa cells through MAPK/ERK pathways[J]. International Journal of Immunology, 2015, 38(6):517-521. (in Chinese) |
[35] | ARAB H H, ASHOUR A M, ALQARNI A M, et al. Camel milk mitigates cyclosporine-induced renal damage in rats:targeting p38/ERK/JNK MAPKs, NF-κB, and matrix metalloproteinases[J]. Biology (Basel), 2021, 10(5):442. |
[36] | ZHANG X, WANG Y N, XIAO C, et al. Resveratrol inhibits LPS-induced mice mastitis through attenuating the MAPK and NF-κB signaling pathway[J]. Microb Pathog, 2017, 107:462-467. |
[1] | SUN Wenli, WANG Haoqi, ZE Licuo, GAO Yufan, ZHANG Feifan, ZHANG Jian, DUAN Mengqi, SHANG Peng, QIANG Bayangzong. Polymorphism of Pro-Inflammatory Factors (IL-1β, IL-6, TNF-α) in Tibetan Pigs and Its Association Analysis with Immune Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1958-1969. |
[2] | YANG Xiaofeng, QIN Xiaowei, LÜ Lihua. Protective Effect of a Derivative of MNQ Against LPS-Induced Inflammatory Injury in Bovine Ovarian Follicular Granulosa Cells in Vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2032-2041. |
[3] | LU Jinye, GAO Yabing, HAN Xinru, LIU Yuzhen, ZHAO Jiayu. The Effect of Streptococcus uberis Infection on Amino Acid Metabolism in Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1766-1776. |
[4] | ZHUANG Cuicui, HAN Bo. Mechanism of Mitochondrial Damage in Bovine Mammary Epithelial Cells and Mouse Mammary Gland Infected with Escherichia coli Isolated from Bovine Mastitis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 822-833. |
[5] | MENG Lu, HU Haiyan, DONG Lei, ZHENG Nan, WANG Jiaqi. Influence of Dairy Farm Environment on Mastitis Milk Microbiota via SourceTracker [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3872-3883. |
[6] | GAO Kangkang, YI Yanyan, ZHAO Yiteng, LIN Pengfei, CHEN Huatao, JIN Yaping. Protective Effect of Endoplasmic Reticulum Stress Preadaptation on LPS-Induced Inflammatory Response in Goat Endometrial Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3546-3556. |
[7] | FAN Lei, SHEN Yu, YOU Liuchao, TIAN Xinyu, LUO Hao, WANG Xin, ZHANG Tingting, SHEN Liuhong. Research Progress on Abnormal Glucose and Lipid Metabolism in Dairy Cows Induced by Lipopolysaccharide (LPS) [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 484-493. |
[8] | SHAN Qiang, WANG Xue, ZHU Yaohong, WANG Jiufeng. Application Prospect of Anti-inflammatory Mechanism of Lactobacillus rhamnosus and Its Prevention and Treatment in Livestock Diseases [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4537-4550. |
[9] | GUO Xinyu, WANG Haotian, ZHANG Xuemei, WANG Xiaolong, LI Heping, YANG Yanbin, ZHONG Kai. Study on the Regulation of Macrophage Polarization by Exosomes Derived from Cow Milk [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4754-4765. |
[10] | MENG Meijuan, WANG Yan, HUO Ran, LI Xuerui, CHANG Guangjun, SHEN Xiangzhen. Effect of Inhibition of PERK on LPS Induced Autophagy in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 351-360. |
[11] | LUORENG Zhuoma, WANG Jinpeng, JIAO Peng, LI Yanxia, DONG Yiwen, WEI Dawei, WNAG Xingping. Construction of Dairy Cow Mastitis Model and Analysis of mRNA Transcription Level of Inflammation Related Cytokine Genes [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2763-2772. |
[12] | JIAO Peng, WANG Xingping, WANG Shuzhe, WANG Jinpeng, LUORENG Zhuoma, JIA Li, WEI Dawei, MA Yun. Effect of Differentially Expressed lncRNA BCL2 in Dairy Cow with Mastitis on the Expression of Inflammation and Apoptosis Related mRNA [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2160-2171. |
[13] | WANG Di, YU Ying. Research Progress on Transcriptomics and Epigenetics of Bovine S. aureus Mastitis Resistance [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 329-338. |
[14] | ZUO Yang, LI Tian, HU Xiuhua, SONG Zhiqiang, SUN Chengtao, WU Congming, WANG Shaolin. Epidemiological Characteristics of ESBL-Producing Resistant Bacteria in Dairy Farming Environment [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 4027-4034. |
[15] | ZHANG Ruili, ZHANG Di, GUO Rong, CHEN Yang, LI Guangxing, HUANG Xiaodan. Selenium Deficiency Induced Thymocytes Apoptosis of Broilers via the TLR4/MyD88/NF-κB Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 4035-4047. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||