Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (8): 2621-2632.doi: 10.11843/j.issn.0366-6964.2022.08.020
• PREVENTIVE VETERINARY MEDICINE • Previous Articles Next Articles
WU Xuemei1, YANG Xin1, YUAN Yajie1, YIN Yanling1, LAI Peng1, SONG Junke1, SHI Huaiping2, ZHAO Guanghui1,3*
Received:
2021-11-11
Online:
2022-08-23
Published:
2022-08-23
CLC Number:
WU Xuemei, YANG Xin, YUAN Yajie, YIN Yanling, LAI Peng, SONG Junke, SHI Huaiping, ZHAO Guanghui. Immunomodulatory Effect of C5a/C5aR Signal during Cryptosporidium parvum Infection[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2621-2632.
[1] | YANG X, GUO Y Q, XIAO L H, et al. Molecular epidemiology of human cryptosporidiosis in low- and middle-income countries[J]. Clin Microbiol Rev, 2021, 34(2):e00087-19. |
[2] | JEŽKOVÁ J, LIMPOUCHOVÁ Z, PREDIGER J, et al. Cryptosporidium myocastoris n. sp. (Apicomplexa:Cryptosporidiidae), the species adapted to the nutria (Myocastor coypus)[J]. Microorganisms, 2021, 9(4):813. |
[3] | BOUZID M, HUNTER P R, CHALMERS R M, et al. Cryptosporidium pathogenicity and virulence[J]. Clin Microbiol Rev, 2013, 26(1):115-134. |
[4] | CHECKLEY W, WHITE A C, JAGANATH D, et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium[J]. Lancet Infect Dis, 2015, 15(1):85-94. |
[5] | PETRY F, JAKOBI V, TESSEMA T S. Host immune response to Cryptosporidium parvum infection[J]. Exp Parasitol, 2010, 126(3):304-309. |
[6] | LAURENT F, LACROIX-LAMANDÉ S. Innate immune responses play a key role in controlling infection of the intestinal epithelium by Cryptosporidium[J]. Int J Parasitol, 2017, 47(12):711-721. |
[7] | BARAKAT F M, MCDONALD V, DI SANTO J P, et al. Roles for NK cells and an NK cell-independent source of intestinal gamma interferon for innate immunity to Cryptosporidium parvum infection[J]. Infect Immun, 2009, 77(11):5044-5049. |
[8] | IVANOVA D L, DENTON S L, FETTEL K D, et al. Innate lymphoid cells in protection, pathology, and adaptive immunity during Apicomplexan infection[J]. Front Immunol, 2019, 10:196. |
[9] | PETRY F, JAKOBI V, WAGNER S, et al. Binding and activation of human and mouse complement by Cryptosporidium parvum (Apicomplexa) and susceptibility of C1q- and MBL-deficient mice to infection[J]. Mol Immunol, 2008, 45(12):3392-3400. |
[10] | MCNAIR N N, MEAD J R. CD4+ effector and memory cell populations protect against Cryptosporidium parvum infection[J]. Microbes Infect, 2013, 15(8-9):599-606. |
[11] | BORAD A, WARD H. Human immune responses in cryptosporidiosis[J]. Future Microbiol, 2010, 5(3):507-519. |
[12] | RIGGS M W. Recent advances in cryptosporidiosis:the immune response[J]. Microbes Infect, 2002, 4(10):1067-1080. |
[13] | TESSEMA T S, SCHWAMB B, LOCHNER M, et al. Dynamics of gut mucosal and systemic Th1/Th2 cytokine responses in interferon-gamma and interleukin-12p40 knock out mice during primary and challenge Cryptosporidium parvum infection[J]. Immunobiology, 2009, 214(6):454-466. |
[14] | MCDONALD V, KORBEL D S, BARAKAT F M, et al. Innate immune responses against Cryptosporidium parvum infection[J]. Parasite Immunol, 2013, 35(2):55-64. |
[15] | ZHAO G H, FANG Y Q, RYAN U, et. al. Dynamics of Th17 associating cytokines in Cryptosporidium parvum-infected mice[J]. Parasitol Res, 2016, 115(2):879-887. |
[16] | PLANCHON S, FIOCCHI C, TAKAFUJI V, et al. Transforming growth factor-β1 preserves epithelial barrier function:identification of receptors, biochemical intermediates, and cytokine antagonists[J]. J Cell Physiol, 1999, 181(1):55-66. |
[17] | RICKLIN D, HAJISHENGALLIS G, YANG K J, et al. Complement:a key system for immune surveillance and homeostasis[J]. Nat Immunol, 2010, 11(9):785-797. |
[18] | HAAS K M, HASEGAWA M, STEEBER D A, et al. Complement receptors CD21/35 link innate and protective immunity during Streptococcus pneumoniae infection by regulating IgG3 antibody responses[J]. Immunity, 2002, 17(6):713-723. |
[19] | DEMPSEY P W, ALLISON M E D, AKKARAJU S, et al. C3d of complement as a molecular adjuvant:bridging innate and acquired immunity[J]. Science, 1996, 271(5247):348-350. |
[20] | KEMPER C, ATKINSON J P. T-cell regulation:with complements from innate immunity[J]. Nat Rev Immunol, 2007, 7(1):9-18. |
[21] | DING P P, LI L, LI L Y, et al. C5aR1 is a master regulator in colorectal tumorigenesis via immune modulation[J]. Theranostics, 2020, 10(19):8619-8632. |
[22] | STRAINIC M G, LIU J B, HUANG D P, et al. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells[J]. Immunity, 2008, 28(3):425-435. |
[23] | STRAINIC M G, SHEVACH E M, AN F Q, et al. Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3+ regulatory T cells[J]. Nat Immunol, 2013, 14(2):162-171. |
[24] | AJONA D, ORTIZ-ESPINOSA S, PIO R. Complement anaphylatoxins C3a and C5a:emerging roles in cancer progression and treatment[J]. Semin Cell Dev Biol, 2019, 85:153-163. |
[25] | MOULTON R A, MASHRUWALA M A, SMITH A K, et al. Complement C5a anaphylatoxin is an innate determinant of dendritic cell-induced Th1 immunity to Mycobacterium bovis BCG infection in mice[J]. J Leukoc Biol, 2007, 82(4):956-967. |
[26] | SCHMUDDE I, STRÖVER H A, VOLLBRANDT T, et al. C5a receptor signalling in dendritic cells controls the development of maladaptive Th2 and Th17 immunity in experimental allergic asthma[J]. Mucosal Immunol, 2013, 6(4):807-825. |
[27] | SUN S H, ZHAO G Y, LIU C F, et al. Treatment with anti-C5a antibody improves the outcome of H7 N9 virus infection in African green monkeys[J]. Clin Infect Dis, 2015, 60(4):586-595. |
[28] | KIM S H, YANG I Y, JANG S H, et al. C5a receptor-targeting ligand-mediated delivery of dengue virus antigen to M cells evokes antigen-specific systemic and mucosal immune responses in oral immunization[J]. Microbes Infect, 2013, 15(13):895-902. |
[29] | CALAME D G, MUELLER-ORTIZ S L, MORALES J E, et al. The C5a anaphylatoxin receptor (C5aR1) protects against Listeria monocytogenes infection by inhibiting type 1 IFN expression[J]. J Immunol, 2014, 193(10):5099-5107. |
[30] | LIU T P, XU G L, GUO B, et al. An essential role for C5aR signaling in the optimal induction of a malaria-specific CD4+ T cell response by a whole-killed blood-stage vaccine[J]. J Immunol, 2013, 191(1):178-186. |
[31] | SCHMITZ V, ALMEIDA L N, SVENSJÖ E, et al. C5a and bradykinin receptor cross-talk regulates innate and adaptive immunity in Trypanosoma cruzi infection[J]. J Immunol, 2014, 193(7):3613-3623. |
[32] | GARCÉS-SANCHEZ G, WILDERER P A, HORN H, et al. Assessment of the viability of Cryptosporidium parvum oocysts with the induction ratio of hsp70 mRNA production in manure[J]. J Microbiol Methods, 2013, 94(3):280-289. |
[33] | FONSECA M I, AGER R R, CHU S H, et al. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer's disease[J]. J Immunol, 2009, 183(2):1375-1383. |
[34] | 李松瑞, 牛子文, 张素梅, 等. 微小隐孢子虫感染动物模型及其应用研究进展[J]. 中国病原生物学杂志, 2018, 13(7):785-788.LI S R, NIU Z W, ZHANG S M, et al. Advances in the study of and uses of animal models of Cryptosporidium parvum infection[J]. Journal of Pathogen Biology, 2018, 13(7):785-788. (in Chinese) |
[35] | BENAMROUZ S, GUYOT K, GAZZOLA S, et al. Cryptosporidium parvum infection in SCID mice infected with only one oocyst:qPCR assessment of parasite replication in tissues and development of digestive cancer[J]. PLoS One, 2012, 7(12):e51232. |
[36] | 陈 甫, 黄克和. 建立微小隐孢子虫感染小鼠模型方法的研究[J]. 中国人兽共患病学报, 2007, 23(2):195-198.CHEN F, HUANG K H. Study on the optimal conditions to establish the mouse model infected with Cryptosporidium parvum oocysts[J]. Chinese Journal of Zoonoses, 2007, 23(2):195-198. (in Chinese) |
[37] | 卢思奇, 罗晓冰, 陈小宁, 等. 实验感染昆明鼠粪便微小隐孢子虫18SrRNA基因检测[J]. 中国寄生虫病防治杂志, 2003, 16(4):196-199.LU S Q, LUO X B, CHEN X N, et al. Detection of Cryptosporidium parvum in stool specimens of experimentally infected km mice by 18SrRNA gene amplification[J]. Chinese Journal of Parasitic Disease Control, 2003, 16(4):196-199. (in Chinese) |
[38] | CLARKE E V, TENNER A J. Complement modulation of T cell immune responses during homeostasis and disease[J]. J Leukoc Biol, 2014, 96(5):745-756. |
[39] | 郭雅旭, 吴 飞, 方艳琴, 等. 过敏毒素C5a和C3a在微小隐孢子虫感染中的表达分析[J]. 中国兽医学报, 2017, 37(5):871-874, 908.GUO Y X, WU F, FANG Y Q, et al. Expression analysis of anaphylatoxins C5a and C3a in Cryptosporidium parvum-infecting mice[J]. Chinese Journal of Veterinary Science, 2017, 37(5):871-874, 908. (in Chinese) |
[40] | KIM H, ERDMAN L K, LU Z Y, et al. Functional roles for C5a and C5aR but not C5L2 in the pathogenesis of human and experimental cerebral malaria[J]. Infect Immun, 2014, 82(1):371-379. |
[41] | BRIUKHOVETSKA D, OHM B, MEY F T, et al. C5aR1, activation drives early IFN-γ production to control exprimental Toxoplasma gondii infection[J]. Front Immunol, 2020, 11:1397 |
[1] | SHANG Kaiyuan, JIANG Mingfeng, GUAN Jiuqiang, AN Tianwu, ZHAO Hongwen, BAI Qin, WU Weisheng, LI Huade, XIE Rongqing, SHA Quan, LUO Xiaolin, ZHANG Xiangfei. Effects of Maternal Nutritional Regulation in Transition Period on Growth and Development, Serum Biochemistry and Immune Function of Yak Calves [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1638-1648. |
[2] | WANG Dongliang, REN Jing, HAO Qinqin, LI Pengfei. Identification and Transcriptional Regulation Analysis of Core Promoter of Bovine CART Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3689-3699. |
[3] | LI Qianqian, LIN Xin, WEI Yilin, CUI Haoyu, ZOU Ronghua, WU Xiaoni, GE Jiazhen, HUANG Guoliang, ZHANG Lijuan, ZHENG Fuying, LIN Guozhen. Study on the Role of RaeR in the Regulation of Efflux Pump RaeC-RaeA-RaeB of Rimerella anatipestifer [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3793-3802. |
[4] | WU Zhili, YAO Junhu, LEI Xinjian. Research Progress of Rumen-protected Glucose on Nutritional Regulation in Perinatal Dairy Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3173-3182. |
[5] | WANG Siying, ZOU Hong, SONG Zhenhui. The Role of Na+/H+ Exchanger Isoform 3 in Infectious Diarrhea and Its Activity Regulation Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3230-3241. |
[6] | GUO Yanli, LI Keqiang, BAI Shaochuan, WANG Tao, WANG Dehe, WANG Qi, LI Lanhui. The Structure, Activity Regulation of ALV-E and Its Effects on Host Function [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2683-2691. |
[7] | YU Shixiong, WEI Lingyun, XU Tiantian, JIAO Jinzhen, JIANG Linshu, HE Zhixiong. Research Progress of Intestinal Microbial Colonization Pattern in Young Ruminants and Its Nutritional Regulation [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2701-2707. |
[8] | FENG Weimin, LIU Xiao, HUANG Teng. The Evasion Strategy against CTL Recognition by Herpesviruses of Domestic Animals: Interference with MHC Class Ⅰ Antigen Presentation Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2241-2251. |
[9] | WANG Wei, HE Xiaoyun, CHU Mingxing. Advances in the Regulation of Mammal Reproduction by the Interaction of Circadian Rhythm and Estrogens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1771-1781. |
[10] | CHANG Xinyu, WANG Jiguang, WANG Jing, ZHANG Haijun, QI Guanghai, QIU Kai, WU Shugeng. Research Progress of Precision Rearing Technology for Commercial Layers [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1815-1823. |
[11] | CHEN Fangfang, LI Zhonghua, ZHU Zhiwei, LI Jinchun, LIU Cuiyan. Recent Advances in Multifunctional Research of Invariant Chain [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1824-1833. |
[12] | WANG Lan, HE Mingyu, ZHANG Min, DING Juntao. MicroRNAs Regulate Antiviral Immunity and Viral Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 463-472. |
[13] | XING Wenwen, QI Nannan, LI Mengxuan, LIU Jiying. Research Progress on the Mechanism of YY1 and Its Role in the Regulation of Animal Reproduction [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4040-4049. |
[14] | DAI Chaohui, LI Hui, ZHAO Weimin, FU Yanfeng, LIAO Chao, LI Bixia, WANG Xuemin, CHENG Jinhua. Research Progress in Toxic Effect of Deoxynivalenol on Pigs and Its Toxicological Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 24-35. |
[15] | MA Ziming, GUO Xingru, DAI Tianshu, WEI Shihao, SHI Yuangang, DAN Xingang. Research Progress on Regulatory Mechanism of Cattle Uterine Involution and Methods of Promoting Uterine Involution [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 58-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||