Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (10): 3287-3295.doi: 10.11843/j.issn.0366-6964.2022.10.002
• REVIEW • Previous Articles Next Articles
GAN Jianyu, ZHANG Xin, CAI Gengyuan, HONG Linjun*, HUANG Sixiu*
Received:
2022-04-20
Online:
2022-10-23
Published:
2022-10-26
CLC Number:
GAN Jianyu, ZHANG Xin, CAI Gengyuan, HONG Linjun, HUANG Sixiu. Research Progress of DNA Methylation during Porcine Embryonic Development[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3287-3295.
[1] | PRATHER R S, LORSON M, ROSS J W, et al.Genetically engineered pig models for human diseases[J].Annu Rev Anim Biosci, 2013, 1:203-219. |
[2] | BICK J T, FLÖTER V L, ROBINSON M D, et al.Small RNA-seq analysis of single porcine blastocysts revealed that maternal estradiol-17beta exposure does not affect miRNA isoform (isomiR) expression[J].BMC Genomics, 2018, 19(1):590. |
[3] | BAZER F W, JOHNSON G A.Pig blastocyst-uterine interactions[J].Differentiation, 2014, 87(1-2):52-65. |
[4] | BIDARIMATH M, TAYADE C.Pregnancy and spontaneous fetal loss:A pig perspective[J].Mol Reprod Dev, 2017, 84(9):856-869. |
[5] | WU G, BAZER F W, WALLACE J M, et al.BOARD-INVITED REVIEW:Intrauterine growth retardation:implications for the animal sciences[J].J Anim Sci, 2006, 84(9):2316-2337. |
[6] | POPE W F.Uterine asynchrony:A cause of embryonic loss[J].Biol Reprod, 1988, 39(5):999-1003. |
[7] | EGGER G, LIANG G N, APARICIO A, et al.Epigenetics in human disease and prospects for epigenetic therapy[J].Nature, 2004, 429(6990):457-463. |
[8] | JAENISCH R, BIRD A.Epigenetic regulation of gene expression:How the genome integrates intrinsic and environmental signals[J].Nat Genet, 2003, 33 Suppl:245-254. |
[9] | FENG S H, JACOBSEN S E, REIK W.Epigenetic reprogramming in plant and animal development[J].Science, 2010, 330(6004):622-627. |
[10] | ALBERIO R.Regulation of cell fate decisions in early mammalian embryos[J].Annu Rev Anim Biosci, 2020, 8:377-393. |
[11] | ARRELL V L, DAY B N, PRATHER R S.The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, Sus scrofa:quantitative and qualitative aspects of protein synthesis[J].Biol Reprod, 1991, 44(1):62-68. |
[12] | BAZER F W, SPENCER T E, JOHNSON G A, et al.Uterine receptivity to implantation of blastocysts in mammals[J].Front Biosci (Schol Ed), 2011, 3(2):745-767. |
[13] | TAYADE C, BLACK G P, FANG Y, et al.Differential gene expression in endometrium, endometrial lymphocytes, and trophoblasts during successful and abortive embryo implantation[J].J Immunol, 2006, 176(1):148-156. |
[14] | KACZMAREK M M, NAJMULA J, GUZEWSKA M M, et al.miRNAs in the peri-implantation period:Contribution to embryo-maternal communication in pigs[J].Int J Mol Sci, 2020, 21(6):2229. |
[15] | 胡 群, 叶 南, 史泽宇, 等.猪妊娠过程中胎盘发育及其调控基因研究进展[J].中国畜牧兽医, 2018, 45(6):1633-1638.HU Q, YE N, SHI Z Y, et al.Research advance on placenta development and its regulated genes in pig[J].China Animal Husbandry & Veterinary Medicine, 2018, 45(6):1633-1638.(in Chinese) |
[16] | LAW J A, JACOBSEN S E.Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J].Nat Rev Genet, 2010, 11(3):204-220. |
[17] | BESTOR T H.The DNA methyltransferases of mammals[J].Hum Mol Genet, 2000, 9(16):2395-2402. |
[18] | LI Y, ZHANG Z, CHEN J, et al.Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1[J].Nature, 2018, 564(7734):136-140. |
[19] | SCHNEIDER E, PLIUSHCH G, EL HAJJ N, et al.Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns[J].Nucleic Acids Res, 2010, 38(12):3880-3890. |
[20] | MEDVEDEVA Y A, KHAMIS A M, KULAKOVSKIY I V, et al.Effects of cytosine methylation on transcription factor binding sites[J].BMC Genomics, 2014, 15:119. |
[21] | DURCOVA-HILLS G, HAJKOVA P, SULLIVAN S, et al.Influence of sex chromosome constitution on the genomic imprinting of germ cells[J].Proc Natl Acad Sci U S A, 2006, 103(30):11184-11188. |
[22] | VARLEY K E, GERTZ J, BOWLING K M, et al.Dynamic DNA methylation across diverse human cell lines and tissues[J].Genome Res, 2013, 23(3):555-567. |
[23] | LI M Z, WU H L, LUO Z G, et al.An atlas of DNA methylomes in porcine adipose and muscle tissues[J].Nat Commun, 2012, 3:850. |
[24] | GOWHER H, JELTSCH A.Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse:the enzyme modifies DNA in a non-processive manner and also methylates non-CpA sites[J].J Mol Biol, 2001, 309(5):1201-1208. |
[25] | RAMSAHOYE B H, BINISZKIEWICZ D, LYKO F, et al.Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a[J].Proc Natl Acad Sci U S A, 2000, 97(10):5237-5242. |
[26] | LAURENT L, WONG E, LI G L, et al.Dynamic changes in the human methylome during differentiation[J].Genome Res, 2010, 20(3):320-331. |
[27] | LISTER R, PELIZZOLA M, DOWEN R H, et al.Human DNA methylomes at base resolution show widespread epigenomic differences[J].Nature, 2009, 462(7271):315-322. |
[28] | SANTOS F, HENDRICH B, REIK W, et al.Dynamic reprogramming of DNA methylation in the early mouse embryo[J].Dev Biol, 2002, 241(1):172-182. |
[29] | LEE H J, HORE T A, REIK W.Reprogramming the methylome:Erasing memory and creating diversity[J].Cell Stem Cell, 2014, 14(6):710-719. |
[30] | LI E.Chromatin modification and epigenetic reprogramming in mammalian development[J].Nat Rev Genet, 2002, 3(9):662-673. |
[31] | SMITH Z D, CHAN M M, MIKKELSEN T S, et al.A unique regulatory phase of DNA methylation in the early mammalian embryo[J].Nature, 2012, 484(7394):339-344. |
[32] | KAFRI T, ARIEL M, BRANDEIS M, et al.Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line[J].Genes Dev, 1992, 6(5):705-714. |
[33] | MONK M, BOUBELIK M, LEHNERT S.Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development[J].Development, 1987, 99(3):371-382. |
[34] | FULKA J, FULKA H, SLAVIK T, et al.DNA methylation pattern in pig in vivo produced embryos[J].Histochem Cell Biol, 2006, 126(2):213-217. |
[35] | JEONG Y S, YEO S, PARK J S, et al.DNA methylation state is preserved in the sperm-derived pronucleus of the pig zygote[J].Int J Dev Biol, 2007, 51(8):707-714. |
[36] | ZHU Q F, SANG F, WITHEY S, et al.Specification and epigenomic resetting of the pig germline exhibit conservation with the human lineage[J].Cell Rep, 2021, 34(6):108735. |
[37] | HYLDIG S M W, OSTRUP O, VEJLSTED M, et al.Changes of DNA methylation level and spatial arrangement of primordial germ cells in embryonic day 15 to embryonic day 28 pig embryos[J].Biol Reprod, 2011, 84(6):1087-1093. |
[38] | GÓMEZ-REDONDO I, PLANELLS B, CÁNOVAS S, et al.Genome-wide DNA methylation dynamics during epigenetic reprogramming in the porcine germline[J].Clin Epigenet, 2021, 13(1):27. |
[39] | REIK W.Stability and flexibility of epigenetic gene regulation in mammalian development[J].Nature, 2007, 447(7143):425-432. |
[40] | HAJKOVA P, JEFFRIES S J, LEE C, et al.Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway[J].Science, 2010, 329(5987):78-82. |
[41] | MORGAN H D, DEAN W, COKER H A, et al.Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues:implications for epigenetic reprogramming[J].J Biol Chem, 2004, 279(50):52353-52360. |
[42] | POPP C, DEAN W, FENG S H, et al.Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency[J].Nature, 2010, 463(7284):1101-1105. |
[43] | GUIBERT S, FORNÉ T, WEBER M.Global profiling of DNA methylation erasure in mouse primordial germ cells[J].Genome Res, 2012, 22(4):633-641. |
[44] | LUO Z G, ZHANG K, CHEN L, et al.Molecular characterization and tissue expression profile of the Dnmts gene family in pig[J].J Integr Agric, 2017, 16(6):1367-1374. |
[45] | SHARIF J, MUTO M, TAKEBAYASHI S I, et al.The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA[J].Nature, 2007, 450(7171):908-912. |
[46] | OKANO M, XIE S P, LI E.Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases[J]. Nat Genet, 1998, 19(3):219-220. |
[47] | WION D, CASADESÚS J.N6-methyl-adenine:An epigenetic signal for DNA-protein interactions[J].Nat Rev Microbiol, 2006, 4(3):183-192. |
[48] | RATEL D, RAVANAT J L, BERGER F, et al.N6-methyladenine:the other methylated base of DNA[J].Bioessays, 2006, 28(3):309-315. |
[49] | HE S M, ZHANG G Q, WANG J J, et al.6 mA-DNA-binding factor Jumu controls maternal-to-zygotic transition upstream of Zelda[J].Nat Commun, 2019, 10(1):2219. |
[50] | LIU J Z, ZHU Y X, LUO G Z, et al.Abundant DNA 6 mA methylation during early embryogenesis of zebrafish and pig[J].Nat Commun, 2016, 7:13052. |
[51] | FERNANDES S B, GROVA N, ROTH S, et al.N6-methyladenine in eukaryotic DNA:Tissue distribution, early embryo development, and neuronal toxicity[J].Front Genet, 2021, 12:657171. |
[52] | LI Z, ZHAO S, NELAKANTI R V, et al.N6-methyladenine in DNA antagonizes SATB1 in early development[J].Nature, 2020, 583(7817):625-630. |
[53] | WU T P, WANG T, SEETIN M G, et al.DNA methylation on N6-adenine in mammalian embryonic stem cells[J].Nature, 2016, 532(7599):329-333. |
[54] | BOULIAS K, GREER E L.Means, mechanisms and consequences of adenine methylation in DNA[J].Nat Rev Genet, 2022, 23(7):411-428. |
[55] | ZHU Q F, STÖGER R, ALBERIO R.A Lexicon of DNA modifications:Their roles in embryo development and the germline[J].Front Cell Dev Biol, 2018, 6:24. |
[56] | ZHAO J G, WHYTE J, PRATHER R S.Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer[J].Cell Tissue Res, 2010, 341(1):13-21. |
[57] | PRATHER R S, SHEN M D, DAI Y F.Genetically modified pigs for medicine and agriculture[J].Biotechnol Genet Eng Rev, 2008, 25:245-265. |
[58] | LIU Y, LI J, LØVENDAHL P, et al.In vitro manipulation techniques of porcine embryos:A meta-analysis related to transfers, pregnancies and piglets[J].Reprod Fertil Dev, 2015, 27(3):429-439. |
[59] | DESHMUKH R S, ØSTRUP O, ØSTRUP E, et al.DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer[J].Epigenetics, 2011, 6(2):177-187. |
[60] | SONG X X, LIU Z H, HE H B, et al.Dnmt1s in donor cells is a barrier to SCNT-mediated DNA methylation reprogramming in pigs[J].Oncotarget, 2017, 8(21):34980-34991. |
[61] | WANG X W, SHI J S, CAI G Y, et al.Overexpression of MBD3 improves reprogramming of cloned pig embryos[J].Cell Reprogram, 2019, 21(5):221-228. |
[62] | LI Z C, HE X Y, CHEN L W, et al.Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer[J].Cell Reprogram, 2013, 15(5):459-470. |
[63] | ZHAI Y H, LI W, ZHANG Z R, et al.Epigenetic states of donor cells significantly affect the development of somatic cell nuclear transfer (SCNT) embryos in pigs[J].Mol Reprod Dev, 2018, 85(1):26-37. |
[64] | HUAN Y J, ZHU J, HUANG B, et al.Trichostatin A rescues the disrupted imprinting induced by somatic cell nuclear transfer in pigs[J].PLoS One, 2015, 10(5):e0126607. |
[65] | XU W H, LI Z C, YU B, et al.Effects of DNMT1 and HDAC inhibitors on gene-specific methylation reprogramming during porcine somatic cell nuclear transfer[J].PLoS One, 2013, 8(5):e64705. |
[66] | ZHAI Y H, ZHANG M, AN X L, et al.TRIM28 maintains genome imprints and regulates development of porcine SCNT embryos[J].Reproduction, 2021, 161(4):411-424. |
[67] | YU D W, WANG J, ZOU H Y, et al.Silencing of retrotransposon-derived imprinted gene RTL1 is the main cause for postimplantational failures in mammalian cloning[J].Proc Natl Acad Sci U S A, 2018, 115(47):E11071-E11080. |
[68] | WANG P, LI X P, CAO L H, et al.MicroRNA-148a overexpression improves the early development of porcine somatic cell nuclear transfer embryos[J].PLoS One, 2017, 12(6):e0180535. |
[69] | QU J D, WANG X Y, JIANG Y J, et al.Optimizing 5-aza-2'-deoxycytidine treatment to enhance the development of porcine cloned embryos by inhibiting apoptosis and improving DNA methylation reprogramming[J].Res Vet Sci, 2020, 132:229-236. |
[70] | JEONG P S, YANG H J, PARK S H, et al.Combined chaetocin/trichostatin A treatment improves the epigenetic modification and developmental competence of porcine somatic cell nuclear transfer embryos[J].Front Cell Dev Biol, 2021, 9:709574. |
[71] | ZHAI Y H, ZHANG Z R, YU H, et al.Dynamic methylation changes of DNA and H3K4 by RG108 improve epigenetic reprogramming of somatic cell nuclear transfer embryos in pigs[J].Cell Physiol Biochem, 2018, 50(4):1376-1397. |
[72] | JIN J X, LEE S, TAWEECHAIPAISANKUL A, et al.The HDAC inhibitor LAQ824 enhances epigenetic reprogramming and in vitro development of porcine SCNT embryos[J].Cell Physiol Biochem, 2017, 41(3):1255-1266. |
[73] | JEONG P S, SIM B W, PARK S H, et al.Chaetocin improves pig cloning efficiency by enhancing epigenetic reprogramming and autophagic activity[J].Int J Mol Sci, 2020, 21(14):4836. |
[74] | WATERLAND R A.Assessing the effects of high methionine intake on DNA methylation[J].J Nutr, 2006, 136(6 Suppl):1706S-1710S. |
[75] | ZGLEJC K, FRANCZAK A.Peri-conceptional under-nutrition alters the expression of TRIM28 and ZFP57 in the endometrium and embryos during peri-implantation period in domestic pigs[J].Reprod Domest Anim, 2017, 52(4):542-550. |
[76] | ALTMANN S, MURANI E, SCHWERIN M, et al.Maternal dietary protein restriction and excess affects offspring gene expression and methylation of non-SMC subunits of condensin I in liver and skeletal muscle[J].Epigenetics, 2012, 7(3):239-252. |
[77] | OSTER M, TRAKOOLJUL N, REYER H, et al.Sex-specific muscular maturation responses following prenatal exposure to methylation-related micronutrients in pigs[J].Nutrients, 2017, 9(1):74. |
[78] | FRANCZAK A, ZGLEJC-WASZAK K, MARTYNIAK M, et al.Peri-conceptional nutritional restriction alters transcriptomic profile in the peri-implantation pig embryos[J].Anim Reprod Sci, 2018, 197:305-316. |
[79] | ZGLEJC-WASZAK K, WASZKIEWICZ E M, FRANCZAK A.Periconceptional undernutrition affects the levels of DNA methylation in the peri-implantation pig endometrium and in embryos[J].Theriogenology, 2019, 123:185-193. |
[80] | FRANCZAK A, ZGLEJC K, WASZKIEWICZ E, et al.Periconceptional undernutrition affects in utero methyltransferase expression and steroid hormone concentrations in uterine flushings and blood plasma during the peri-implantation period in domestic pigs[J].Reprod Fertil Dev, 2017, 29(8):1499-1508. |
[81] | LI Z C, YUE Z M, AO Z, et al.Maternal dietary supplementation of arginine increases the ratio of total cloned piglets born to total transferred cloned embryos by improving the pregnancy rate of recipient sows[J].Anim Reprod Sci, 2018, 196:211-218. |
[82] | CEDAR H, BERGMAN Y.Linking DNA methylation and histone modification:Patterns and paradigms[J].Nat Rev Genet, 2009, 10(5):295-304. |
[1] | ZHANG Wei, PAN Zhihao, FANG Fugui. Advances in Epigenetic Regulation of the Onset of Puberty in Female Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1875-1882. |
[2] | KANG Jiawei, HUANG Xuankai, WANG Zhipeng, ZHANG Aizhen, MENG Fangrong, GAI Peng, BAO Junfu, SUN Kexin, SONG Shaokang, SUN Pan, CHEN Yichuan, ZHANG Lei, GAO Shengyue, CHANG Minghang. Estimation of Genetic Parameters for Growth, Reproduction, and Body Measurements Traits in Large White Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1936-1944. |
[3] | SUN Wenli, WANG Haoqi, ZE Licuo, GAO Yufan, ZHANG Feifan, ZHANG Jian, DUAN Mengqi, SHANG Peng, QIANG Bayangzong. Polymorphism of Pro-Inflammatory Factors (IL-1β, IL-6, TNF-α) in Tibetan Pigs and Its Association Analysis with Immune Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1958-1969. |
[4] | LI Wanjun, XU Jiehuan, HE Mengxian, KONG Yuting, ZHANG Defu, DAI Jianjun. Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1999-2010. |
[5] | PENG Peiya, CHEN Yuhan, YANG Long, WANG Ming, ZHAO Ruiting, HE Jun, YIN Yulong, LIU Mei. Research Progress of Copy Number Variation in Livestock [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1356-1369. |
[6] | HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411. |
[7] | LAN Xinrui, ZHAO Baobao, ZHANG Bihan, LIN Xiaoyu, MA Huiming, WANG Yongsheng. Effects of β-sitosterol on Porcine Oocyte Maturation and Embryonic Development in Vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1629-1637. |
[8] | SHEN Qi, WANG Kai, ZHAO Zhenjian, CHEN Dong, YU Yang, CUI Shengdi, WANG Junge, CHEN Ziyang, WU Pingxian, TANG Guoqing. Regulation of NO Concentration by NOS2 Gene DNA Methylation Editing Affects the Expression of Muscle Development Pathway Genes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 984-994. |
[9] | SONG Kelin, YAN Zunqiang, WANG Pengfei, CHENG Wenhao, LI Jie, BAI Yaqin, SUN Guohu, GUN Shuangbao. Analysis on Genetic Diversity and Genetic Structure Based on SNP Chips of Huixian Qingni Black Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 995-1006. |
[10] | LIU Yangguang, ZHANG Huibin, WEN Haoyu, XIE Fan, ZHAO Shiming, DING Yueyun, ZHENG Xianrui, YIN Zongjun, ZHANG Xiaodong. SNP/Indel Screening Analysis of Porcine Ovarian Granulosa Cells Treated with Follicular Fluid Exosomes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 576-586. |
[11] | CHEN Xueqing, LI Zhiqiang, WU Yulong, ZHANG Chonghao, ZHANG Yuanshu. Expression of Renin Angiotensin System (RAS) in Jejunum Tissues of Piglets with Clinical Diarrhea and Its Relationship with Intestinal Inflammation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 751-758. |
[12] | WEI Miaoyi, WU Shihai, YANG Fulin, YU Chenyun, SUN Zhigang, LIU Xinyuan, XU Yuanyuan, LIANG Bingbing, LI Fuhuang, SUN Hong, LIU Xiaoye, DONG Hong. Clinical Efficacy of Herbal Gentian Combat Trichomonas pigeon [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 785-796. |
[13] | XIAO Le, LIU Junyuan, ZENG Wenyu, WANG Qin, HAN Wenjue, LIU Yanling, FAN Yu, XU Yuting, YANG Beini, XIAO Xiong, WANG Zili. Microbiome and Transcriptome Analyses Revealed the Regulatory Mechanism of Xiangsha Liujunzi Decoction on Ileal Injury Induced by ETEC in Weaned Piglets with Diarrhea [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 797-808. |
[14] | ZHANG Jinpeng, CHEN Cuiteng, LIN Lin, FU Huanru, LI Zhaolong, JIANG Bin, HUANG Yu, WAN Chunhe. Establishment of a Real-time Fluorescent RT-PCR Assay for Detection of Pigeon Megrivirus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 860-866. |
[15] | NIU Naiqi, ZHAO Runze, ZONG Wencheng, LIU Xiance, LIU Hai, SHI Guohua, JING Xitao, ZHANG Longchao. Association of Polymorphisms of GREB1L and MIB1 Genes with Rib Number and Carcass Traits in Beijing Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 79-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||