Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (2): 621-632.doi: 10.11843/j.issn.0366-6964.2025.02.014
• Animal Genetics and Breeding • Previous Articles Next Articles
LONG Yizhou1(), LOU Wenqi1, HUANG Shangzhen1, SHI Rui1, CHEN Gong2, LI Bin3, CISANG Zhuoma3, XU Qing2,*(
), WANG Yachun1,*(
)
Received:
2024-06-26
Online:
2025-02-23
Published:
2025-02-26
Contact:
XU Qing, WANG Yachun
E-mail:2021304030321@cau.edu.cn;qingxu@bjtu.edu.cn;wangyachun@cau.edu.cn
CLC Number:
LONG Yizhou, LOU Wenqi, HUANG Shangzhen, SHI Rui, CHEN Gong, LI Bin, CISANG Zhuoma, XU Qing, WANG Yachun. Analyses of Metabolites and Pathways Related to Hypoxic Stress in Dairy Cows Based on Blood Metabolome[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 621-632.
Table 1
Description of information in Holstein cattle in the high and low blood oxygen saturation groups"
个体信息 Individual information | 低血氧饱和度组 Low blood oxygen saturation group | 高血氧饱和度组 High blood oxygen saturation group | |||||
均值 Average | 标准差 Standard deviation | 变异系数/% Coefficient of variation | 均值 Average | 标准差 Standard deviation | 变异系数/% Coefficient of variation | ||
荷斯坦牛血统比例/% Holstein cattle pedigree ratio | 85.83a | 13.63 | 16 | 88.80a | 13.83 | 16 | |
体况评分Body condition score | 3.37a | 1.18 | 35 | 3.28a | 1.06 | 32 | |
胎次Parity | 2.67a | 1.45 | 54 | 2.57a | 1.28 | 50 | |
泌乳天数/d Days in milk | 190.40a | 230.85 | 121 | 227.90a | 123.14 | 54 | |
日龄/d Daily age | 1 840.83a | 723.25 | 39 | 1 924.37a | 588.18 | 31 | |
血氧饱和度/% Blood oxygen saturation | 86.83a | 8.52 | 10 | 96.03b | 2.48 | 3 |
Table 2
The 17 differential metabolites obtained by fold change analysis, t-test and VIP"
差异代谢物 Differential metabolites | FC | t检验t-test | VIP | |
P-value | FDR | |||
3-羟基丁酸3-Hydroxybutyrate | — | — | — | 1.25 |
乙酰乙酸盐Acetoacetate | — | 4.88×10-3 | 3.50×10-2 | 1.47 |
丙酮Acetone | — | — | — | 1.14 |
甜菜碱Betaine | 0.666 | — | — | 1.29 |
柠檬酸盐Citrate | 0.665 | 4.75×10-4 | 6.81×10-3 | 1.80 |
肌酸Creatine | — | — | — | 1.35 |
肌酐Creatinine | — | — | — | 1.21 |
甲酸盐Formate | — | 2.84×10-5 | 1.22×10-3 | 2.10 |
甘氨酸Glycine | 5.130 | 1.16×10-3 | 1.24×10-2 | 1.68 |
异亮氨酸Isoleucine | — | — | — | 1.19 |
赖氨酸Lysine | — | — | — | 1.16 |
甘露醇Mannitol | — | — | — | 1.13 |
蛋氨酸Methionine | — | 1.48×10-3 | 1.27×10-2 | 1.64 |
脯氨酸Proline | — | — | — | 1.20 |
丙二醇Propylene glycol | 0.565 | — | — | 1.26 |
丙酮酸盐Pyruvate | — | 1.83×10-4 | 3.94×10-3 | 1.90 |
尿素Urea | 3.855 | — | — | 1.28 |
Table 3
The 16 enrichment pathways based on pathway analysis and differential metabolites"
代谢通路 Related pathway | 总数 Total | 匹配次数 Hits | 原始P Raw P |
乙醛酸和二羧酸代谢Glyoxylate and dicarboxylate metabolism | 31 | 4 | 6.78×10-5 |
甘氨酸、丝氨酸和苏氨酸代谢Glycine, serine and threonine metabolism | 33 | 4 | 7.33×10-4 |
硫辛酸代谢Lipoic acid metabolism | 28 | 2 | 8.39×10-4 |
柠檬酸盐循环(TCA循环)Citrate cycle (TCA cycle) | 20 | 2 | 1.49×10-3 |
丙氨酸、天冬氨酸和谷氨酸代谢Alanine, aspartate and glutamate metabolism | 28 | 2 | 1.49×10-3 |
初级胆汁酸生物合成Primary bile acid biosynthesis | 46 | 1 | 2.63×10-3 |
谷胱甘肽代谢Glutathione metabolism | 28 | 1 | 2.63×10-3 |
卟啉代谢Porphyrin metabolism | 31 | 1 | 2.63×10-3 |
酪氨酸代谢Tyrosine metabolism | 42 | 2 | 3.52×10-3 |
半胱氨酸和蛋氨酸代谢Cysteine and methionine metabolism | 33 | 2 | 7.18×10-3 |
丁酸甲酯代谢Butanoate metabolism | 15 | 1 | 1.19×10-2 |
精氨酸生物合成Arginine biosynthesis | 14 | 1 | 1.25×10-2 |
嘌呤代谢Purine metabolism | 70 | 1 | 1.25×10-2 |
缬氨酸、亮氨酸和异亮氨酸降解Valine, leucine and isoleucine degradation | 39 | 2 | 2.02×10-2 |
糖酵解/糖异生Glycolysis/Gluconeogenesis | 26 | 1 | 3.33×10-2 |
丙酮酸代谢Pyruvate metabolism | 23 | 1 | 3.33×10-2 |
1 | 赵霞玲, 白玛央金, 次桑卓玛, 等. 西藏主要引进奶牛品种适应性表现及养殖建议[J]. 西藏农业科技, 2022, 44 (4): 93- 95. |
ZHAO X L , BAIMAYANGJIN , CISANGZHUOMA , et al. Adaptability performance and breeding suggestions of main imported dairy cow varieties in Tibet[J]. Tibet Journal of Agricultural Sciences, 2022, 44 (4): 93- 95. | |
2 | 杨柏高, 郝海生, 杜卫华, 等. 牦牛高原适应研究进展[J]. 畜牧兽医学报, 2023, 54 (1): 12- 23. |
YANG B G , HAO H S , DU W H , et al. Advances in research on plateau adaptation of yak[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (1): 12- 23. | |
3 | 黄上真, 马龙刚, 娄文琦, 等. 高原地区奶牛血液指标的影响因素分析[J]. 畜牧兽医学报, 2023, 54 (5): 1964- 1978. |
HUANG S Z , MA L G , LOU W Q , et al. Analysis of influencing factors on blood indicators of dairy cows at high-altitude area[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (5): 1964- 1978. | |
4 | 沈童, 王梦杰, 吴华, 等. 黑果枸杞花青素对低氧诱导的H9c2大鼠心肌细胞凋亡的影响[J]. 畜牧兽医学报, 2023, 54 (8): 3490- 3499. |
SHEN T , WANG M J , WU H , et al. Effect of Lycium ruthenicum murray anthocyanin on hypoxia-induced apoptosis in H9c2 rat cardiomyocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3490- 3499. | |
5 | 索朗曲吉, 巴桑珠扎, 赵丽, 等. 西藏引进良种奶牛高原适应性观察与研究[J]. 中国饲料, 2019, (2): 11- 15. |
SUOLANG Q J , BASANG Z Z , ZHAO L , et al. Observation and research on plateau adaptability of introduced breeding cows in Tibet[J]. China Feed, 2019, (2): 11- 15. | |
6 | 严爱萍. 奶牛引进高海拔地区后发生肺气肿的诊治[J]. 中国兽医杂志, 2008, 44 (4): 69- 70. |
YAN A P . Treatment of pulmonary emphysema in dairy cows after introduction to high altitudes[J]. Chinese Journal of Veterinary Medicine, 2008, 44 (4): 69- 70. | |
7 | 姚琨. 多组学技术解析荷斯坦奶牛高原病的发生机制[D]. 乌鲁木齐: 新疆农业大学, 2021. |
YAO K. Analyses of mechanism of brisket disease in Holstein heifers based on multi-omics technology[D]. Urumqi: Xinjiang Agricultural University, 2021. (in Chinese) | |
8 |
FLOYD J , WU L , HAY BURGESS D , et al. Evaluating the impact of pulse oximetry on childhood pneumonia mortality in resource-poor settings[J]. Nature, 2015, 528 (7580): S53- S59.
doi: 10.1038/nature16043 |
9 |
ZHU J J , WU Y C , JIANG A Y , et al. Effects of dietary N-carbamylglutamate on rumen fermentation parameters, and bacterial community diversity of Holstein dairy cows in Tibet[J]. Front Microbiol, 2023, 14, 1101620.
doi: 10.3389/fmicb.2023.1101620 |
10 | 王宏运, 高亮. 适应性训练预防急性高原反应的疗效观察[J]. 临床军医杂志, 2008, 36 (1): 107- 108. |
WANG H Y , GAO L . Effect of adaptation training on prevention of acute high altitude reaction[J]. Clinical Journal of Medical Officers, 2008, 36 (1): 107- 108. | |
11 | HUANG M Z , ZHANG X , YAN W J , et al. Metabolomics reveals potential plateau adaptability by regulating inflammatory response and oxidative stress-related metabolism and energy metabolism pathways in yak[J]. J Anim Sci Technol, 2022, 64 (1): 97- 109. |
12 | KONG Z W , LI B , ZHOU C S , et al. Comparative analysis of metabolic differences of jersey cattle in different high-altitude areas[J]. Front Vet Sci, 2021, 8, 713913. |
13 | 黄上真. 西藏地区奶牛血液指标规律分析及高原适应性基因挖掘[D]. 北京: 中国农业大学, 2023. |
HUANG S Z. Analysis of blood indicators features of dairy cattle in Tibet and high-altitude adaptation genes mining[D]. Beijing: China Agricultural University, 2023. (in Chinese) | |
14 | CSALA A , VOORBRAAK F P J M , ZWINDERMAN A H , et al. Sparse redundancy analysis of high-dimensional genetic and genomic data[J]. Bioinformatics, 2017, 33 (20): 3228- 3234. |
15 | MEI S H , HE G X , CHEN Z , et al. Probiotic-fermented distillers grain alters the rumen microbiome, metabolome, and enzyme activity, enhancing the immune status of finishing cattle[J]. Animals (Basel), 2023, 13 (24): 3774. |
16 | 胡丽蓉. 基于多组学分析策略的奶牛热应激调控机制研究[D]. 北京: 中国农业大学, 2023. |
HU L R. Investigation of regulatory mechanisms of heat stress in dairy cows on the basis of a multi-omics analysis strategy[D]. Beijing: China Agricultural University, 2023. (in Chinese) | |
17 | CONTRERAS-CORREA Z E , SÁNCHEZ-RODRÍGUEZ H L , ARICK Ⅱ M A , et al. Thermotolerance capabilities, blood metabolomics, and mammary gland hemodynamics and transcriptomic profiles of slick-haired Holstein cattle during mid lactation in Puerto Rico[J]. J Dairy Sci, 2024, 107 (6): 4017- 4032. |
18 | HU L R , BRITO L F , ABBAS Z , et al. Investigating the short-term effects of cold stress on metabolite responses and metabolic pathways in Inner-Mongolia Sanhe cattle[J]. Animals (Basel), 2021, 11 (9): 2493. |
19 | SHIBATA R , ITOH N , NAKANISHI Y , et al. Gut microbiota and fecal metabolites in sustained unresponsiveness by oral immunotherapy in school-age children with cow's milk allergy[J]. Allergol Int, 2024, 73 (1): 126- 136. |
20 | 巴桑旺堆, 罗布, 平错占堆. 娟姗种公牛和荷斯坦种公牛在西藏高原地区饲养效果[J]. 中国动物保健, 2017, 19 (9): 34- 35. |
BA S , LUO B , PING C . Effects of rearing Jersey and Holstein bulls in the Tibetan Plateau region[J]. China Animal Health, 2017, 19 (9): 34- 35. | |
21 | 王书祥, 李红丽, 戴东文, 等. 荷斯坦奶牛高山病的发生情况调查研究[J]. 现代畜牧兽医, 2021, (4): 71- 73. |
WANG S X , LI H L , DAI D W , et al. Investigation on the occurrence of high-altitude sickness in Holstein cows[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2021, (4): 71- 73. | |
22 | HALL J C . Glycine[J]. JPEN J Parenter Enteral Nutr, 1998, 22 (6): 393- 398. |
23 | DETERS M , SIEGERS C P , STRUBELT O . Influence of glycine on the damage induced in isolated perfused rat liver by five hepatotoxic agents[J]. Toxicology, 1998, 128 (1): 63- 72. |
24 | QU W , IKEJIMA K , ZHONG Z , et al. Glycine blocks the increase in intracellular free Ca2+ due to vasoactive mediators in hepatic parenchymal cells[J]. Am J Physiol Gastrointest Liver Physiol, 2002, 283 (6): G1249- G1256. |
25 | JAGETIA G C , GANAPATHI N G , UNNIKRISHNAN M K . Copperglycinate protects mice exposed to various doses of gamma radiation[J]. Strahlenther Onkol, 1993, 169 (5): 323- 328. |
26 | BAINES A D , SHAIKH N , HO P . Mechanisms of perfused kidney cytoprotection by alanine and glycine[J]. Am J Physiol, 1990, 259, F80- F87. |
27 | WHEELER M D , IKEJEMA K , ENOMOTO N , et al. Glycine: a new anti-inflammatory immunonutrient[J]. Cell Mol Life Sci, 1999, 56 (9-10): 843- 856. |
28 | 吕尚军. 谷氨酰胺、甘氨酸及甘谷二肽对烧伤大鼠心肌保护作用及其信号机制的实验研究[D]. 重庆: 第三军医大学, 2007. |
LV S J. The effects of glutamine, glycine and glycyl-glutamine dipeptide on cardiac cytoprotection and its mechanism after burn injury[D]. Chongqing: Army Medical University, 2007. (in Chinese) | |
29 | 陈梦飞, 陆大祥, 戚仁斌, 等. 甘氨酸脂质体对心肌细胞线粒体膜电位及凋亡的影响[J]. 中国病理生理杂志, 2008, 24 (7): 1254- 1258. |
CHEN M F , LU D X , QI R B , et al. Effect of glycine liposomes on mitochondrial membrane potential and apoptosis in cultured cardiomyocytes[J]. Chinese Journal of Pathophysiology, 2008, 24 (7): 1254- 1258. | |
30 | MCCARTY M F , O'KEEFE J H , DINICOLANTONIO J J . Dietary glycine is rate-limiting for glutathione synthesis and may have broad potential for health protection[J]. Ochsner J, 2018, 18 (1): 81- 87. |
31 | 陶文迪, 田秀玉, 李茂星, 等. 黄芪水提取物对高原缺氧大鼠运动能力的影响[J]. 解放军医药杂志, 2019, 31 (12): 12- 18. |
TAO W D , TIAN X Y , LI M X , et al. Effect of astragalus membranaceus aqueous extract on ability of plateau hypoxia exercise in rats[J]. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 2019, 31 (12): 12- 18. | |
32 | 范小庆, 扈金萍. 甘氨酸生理功能与代谢研究进展[J]. 国际药学研究杂志, 2018, 45 (2): 102- 107. |
FAN X Q , HU J P . Physiological function of glycine and its role in metabolism: research advances[J]. Journal of International Pharmaceutical Research, 2018, 45 (2): 102- 107. | |
33 | 卢劲晔, 高亚兵, 韩心茹, 等. 乳房链球菌感染对乳腺上皮细胞中氨基酸代谢的影响[J]. 畜牧兽医学报, 2024, 55 (4): 1766- 1776. |
LU J Y , GAO Y B , HAN X R , et al. The Effect of Streptococcus uberis infection on amino acid metabolism in mammary epithelial cells[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (4): 1766- 1776. | |
34 | 李孟阳. 青海田鼠、布氏田鼠和昆明小鼠骨骼肌低氧适应分子机制[D]. 郑州: 郑州大学, 2022. |
LI M Y. Molecular mechanism of hypoxia adaptation in skeletal muscle of plateau vole, Brandt's vole and Kunming mice[D]. Zhengzhou: Zhengzhou University, 2022. (in Chinese) | |
35 | IMENSHAHIDI M , HOSSENZADEH H . Effects of glycine on metabolic syndrome components: a review[J]. J Endocrinol Invest, 2022, 45 (5): 927- 939. |
36 | PEREA-GIL I , SEEGER T , BRUYNEEL A A N , et al. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy[J]. Eur Heart J, 2022, 43 (36): 3477- 3489. |
37 | CHEN Y K , ZENG A , HE S M , et al. Autophagy-related genes in atherosclerosis[J]. J Healthc Eng, 2021, 2021, 6402206. |
38 | WANG M H , YUAN F C , BAI H , et al. SHMT2 promotes liver regeneration through glycine-activated Akt/mTOR pathway[J]. Transplantation, 2019, 103 (7): e188- e197. |
39 | 汪泉, 刘红. 柠檬酸钠对肾缺血再灌注损伤模型小鼠肾损伤指标及炎症细胞因子的影响[J]. 中国免疫学杂志, 2021, 37 (2): 145-148, 154. |
WANG Q , LIU H . Effects of sodium citrate on renal injury index and inflammatory cytokines in mice with renal ischemia-reperfusion injury[J]. Chinese Journal of Immunology, 2021, 37 (2): 145-148, 154. | |
40 | LU Q , LI Z G , ZHOU N , et al. Impact of citrate pretreatment on ventricular arrhythmia and myocardial capase-3 expression in ischemia/reperfusion injury[J]. Genet Mol Res, 2016, 15 (4): gmr15048848. |
41 | WU F , HUANG W F , TAN Q , et al. ZFP36L2 regulates myocardial ischemia/reperfusion injury and attenuates mitochondrial fusion and fission by LncRNA PVT1[J]. Cell Death Dis, 2021, 12 (6): 614. |
42 | 张博, 周学才, 朱冬梅, 等. 柠檬酸盐对缺氧/复氧诱导的心肌细胞损伤及LKB1/AMPK信号通路的影响[J]. 中西医结合心脑血管病杂志, 2023, 21 (10): 1782- 1787. |
ZHANG B , ZHOU X C , ZHU D M , et al. The effects of citrate on hypoxia/reoxygenation-induced myocardial cell injury and LKB1/AMPK signal pathway[J]. Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease, 2023, 21 (10): 1782- 1787. | |
43 | 项海燕. 柠檬酸盐预处理对心肌缺血/再灌注损伤的影响及其机制研究[D]. 南昌: 南昌大学, 2020. |
XIANG H Y. Effects and mechanism of citrate pretreatment on myocardial ischemia/reperfusion injury[D]. Nanchang: Nanchang University, 2020. (in Chinese) | |
44 | ANDERSON N M , MUCKA P , KERN J G , et al. The emerging role and targetability of the TCA cycle in cancer metabolism[J]. Protein Cell, 2018, 9 (2): 216- 237. |
45 | LIU G W , LI Y H , LIAO N , et al. Energy metabolic mechanisms for high altitude sickness: downregulation of glycolysis and upregulation of the lactic acid/amino acid-pyruvate-TCA pathways and fatty acid oxidation[J]. Sci Total Environ, 2023, 894, 164998. |
46 | LE A , LANE A N , HAMAKER M , et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells[J]. Cell Metab, 2012, 15 (1): 110- 121. |
47 | KIM J W , TCHERNYSHYOV I , SEMENZA G L , et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia[J]. Cell Metab, 2006, 3 (3): 177- 185. |
48 | 郭志丽, 朱妍, 肖红斌, 等. 与脑梗死关联的氨基酸代谢通路研究进展与发现[J]. 中国医药导报, 2013, 10 (26): 24- 27. |
GUO Z L , ZHU Y , XIAO H B , et al. Progress and discovery of research on the amino acid metabolic pathways associated with cerebral infarction[J]. China Medical Herald, 2013, 10 (26): 24- 27. | |
49 | 林金艳. 低氧环境下甘肃鼢鼠肠道菌群和肝、脑糖代谢的适应性重塑研究[D]. 西安: 陕西师范大学, 2022. |
LIN J Y. Adaptive remodeling of Eospalax cansus intestinal flora and liver and brain glucose metabolism in a hypoxic environment[D]. Xi'an: Shaanxi Normal University, 2022. (in Chinese) | |
50 | 于静波, 韩越, 谢新, 等. 脾胃湿热证大鼠模型的尿液代谢组学分析[J]. 中国实验方剂学杂志, 2023, 29 (10): 166- 173. |
YU J B , HAN Y , XIE X , et al. Metabolomic analysis of urine in rat model with spleen-stomach damp-heat syndrome[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29 (10): 166- 173. | |
51 | 张宁, 于栋华, 王宇, 等. 穿山龙抗急性痛风性关节炎的肾脏代谢组学研究[J]. 中华中医药杂志, 2017, 32 (5): 2034- 2039. |
ZHANG N , YU D H , WANG Y , et al. Kidney metabonomics study on acute gouty arthritis treated by Dioscorea Nipponica Makino[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2017, 32 (5): 2034- 2039. |
[1] | Zijiao GUO, Weijie ZHENG, Wei SUN, Baojiang WU, Xiangnan BAO, Qi ZHANG, Jinfeng HE, Siqin BAO, Gaoping ZHAO, Zixin WANG, Bo HAN, Xihe LI, Dongxiao SUN. Study on Genomic Selection of Embryos in Holstein Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2940-2950. |
[2] | CHEN Lili, ZHAO Kang, XIA Min, LU Na, MA Yi. Effect of Birth Season on Holstein Lactation Performance in Tianjin Area [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1970-1977. |
[3] | XIA Shuwen, CHEN Kunlin, SHEN Yangyang, AN Zhenjiang, ZHAO Fang, DING Qiang, ZHONG Jifeng, LIN Zhiping, WANG Huili. The Estimation of Genetic Parameters for Longevity Traits of Holstein Cows in Jiangsu Region [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1030-1039. |
[4] | CAO Jinkang, ZHANG Chun, WANG Jiayao, LI Xiaotong, WANG Pengyu, FANG Yingyan, ZHANG Yu, DING Ning, JIANG Li. Proteomic Analysis of Sperm with Different Freezability in Chinese Holstein Bulls [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1052-1061. |
[5] | ZHANG Zhifei, TANG Xueying, MIN Li, TONG Xiong, CHEN Weidong, JU Xianghong, LI Dagang. Construction of Gene Coexpression Network Related to Lactation Period and Fecundity in Liver Tissue of Holstein Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 528-539. |
[6] | ZHANG Miao, PEI Fen, JU Lin, ZHAO Xiuxin, YANG Jian, XUE Guanghui, XU Qianwen, LIU Yan, ZHANG Yuanpei, CAI Gaozhan, GAO Yundong, YU Ying, WANG Xiao, LI Jianbin. Genetic Analysis of Milk Urea Nitrogen, Milk Production Traits, and Somatic Cell Score in First Lactation of Holstein Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5527-5537. |
[7] | Wanyi LAI, Xinyue TAO, Gengxin YANG, Wenli YU, Shujing LI, Tahir USMAN, Ying YU. Application Study of Chinese Cow's SNPs Chip-Ⅰ in Chinese Holstein and Pakistani Indigenous Dairy Cattle Populations [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4489-4499. |
[8] | WANG Zhenyu, ZHANG Saibo, LIU Wenhui, LIANG Dong, REN Xiaoli, YAN Lei, YAN Yuefei, GAO Tengyun, ZHANG Zhen, HUANG Hetian. Genomic Inbreeding Coefficient Analysis and Functional Gene Screening in Different Dairy Farms Based on SNP Chip Data [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2848-2857. |
[9] | ZHANG Junxing, ZHANG Hailiang, HAN Liyun, MA Yanfen, WEN Wan, ZHOU Jiamin, TIAN Jia, LU Tingting, MA Yun, WANG Yachun. Analysis on the Influencing Factors of Wellness Traits in Holstein Lactating Cows in Ningxia [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2389-2401. |
[10] | DONG Zhihao, SHI Yuxin, GUO Guanhua, YUAN Kaimin, XIU Haoyu, WANG Chao, BAI Junyan, WANG Dong. Comparative Analysis of Salivary Compounds in Different Estrous Stages of Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4636-4652. |
[11] | SUN Dongxiao, ZHANG Shengli, ZHANG Qin, LI Jiao, ZHANG Guixiang, LIU Chousheng, ZHENG Weijie. Application Progress on Genomic Selection Technology for Dairy Cattle in China [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4028-4039. |
[12] | ZHOU Fuzhen, ZHOU Bu, DAI Xu, WANG Haiyang, GUO Mengling, LIANG Yan, YANG Zhangping, MAO Yongjiang. Analysis on the Change of BCS in Early Lactation and Its Effects on Production Performance and Productive Lifespan in Holstein Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2955-2969. |
[13] | YANG Yang, ZHOU Ziwei, ZHANG Jingyi, YANG Shuo, WANG Boyu, GE Nan, LIN Ye, HOU Xiaoming. Analysis on SP1 Gene Structure and Its Function on Milk Fat Synthesis in Holstein Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2970-2981. |
[14] | FAN Tingting, WANG Wenxiang, MA Yi, ZHAO Guoyao, XU Lingyang, CHEN Yan, ZHANG Lupei, GAO Huijiang, LI Junya, GAO Xue. Prediction and Effect Analysis of Heterosis in Simmental, Wagyu and Holstein [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2568-2577. |
[15] | SONG Yuetong, ZHANG Rumei, LI Yanqin, LI Rongling, GAO Yundong, ZHONG Jifeng, XUE Guanghui, WANG Yudong, LI Jianbin, SUN Dongxiao. Analysis of Genetic Parameters of Type Traits and Influence of Genealogical Generation of Holstein Cows in Shandong Province [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1384-1395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||