Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (7): 2848-2857.doi: 10.11843/j.issn.0366-6964.2023.07.017
• ANIMAL GENETICS AND BREEDING • Previous Articles Next Articles
WANG Zhenyu1, ZHANG Saibo1, LIU Wenhui1, LIANG Dong1, REN Xiaoli2, YAN Lei2, YAN Yuefei2, GAO Tengyun1, ZHANG Zhen2,3*, HUANG Hetian1*
Received:
2022-11-22
Online:
2023-07-23
Published:
2023-07-21
CLC Number:
WANG Zhenyu, ZHANG Saibo, LIU Wenhui, LIANG Dong, REN Xiaoli, YAN Lei, YAN Yuefei, GAO Tengyun, ZHANG Zhen, HUANG Hetian. Genomic Inbreeding Coefficient Analysis and Functional Gene Screening in Different Dairy Farms Based on SNP Chip Data[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2848-2857.
[1] | CEBALLOS F C, JOSHI P K, CLARK D W, et al.Runs of homozygosity:windows into population history and trait architecture[J]. Nat Rev Genet, 2018, 19(4):220-234. |
[2] | BROMAN K W, WEBER J L.Long homozygous chromosomal segments in reference families from the Centre d'Etude du Polymorphisme Humain[J].Am J Hum Genet, 1999, 65(6):1493-1500. |
[3] | CURIK I, FERENČAKOVIĆ M, SÖLKNER J.Inbreeding and runs of homozygosity:a possible solution to an old problem[J]. Livest Sci, 2014, 166:26-34. |
[4] | MULIM H A, BRITO L F, PINTO L F B, et al.Characterization of runs of homozygosity, heterozygosity-enriched regions, and population structure in cattle populations selected for different breeding goals[J].BMC Genomics, 2022, 23(1):209. |
[5] | ZHANG Q Q, GULDBRANDTSEN B, BOSSE M, et al.Runs of homozygosity and distribution of functional variants in the cattle genome[J]. BMC Genomics, 2015, 16(1):542. |
[6] | PURFIELD D C, BERRY D P, MCPARLAND S, et al.Runs of homozygosity and population history in cattle[J].BMC Genet, 2012, 13:70. |
[7] | KIM E S, COLE J B, HUSON H, et al.Effect of artificial selection on runs of homozygosity in U.S.Holstein cattle[J].PLoS One, 2013, 8(11):e80813. |
[8] | LENCZ T, LAMBERT C, DEROSSE P, et al.Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia[J]. Proc Natl Acad Sci U S A, 2007, 104(50):19942-19947. |
[9] | CORREIA-COSTA G R, SGARDIOLI I C, SANTOS A P D, et al.Increased runs of homozygosity in the autosomal genome of Brazilian individuals with neurodevelopmental delay/intellectual disability and/or multiple congenital anomalies investigated by chromosomal microarray analysis[J].Genet Mol Biol, 2022, 45(1):e20200480. |
[10] | DA CRUZ P R S, ANANINA G, SECOLIN R, et al.Demographic history differences between Hispanics and Brazilians imprint haplotype features[J].G3 (Bethesda), 2022, 12(7):jkac111. |
[11] | 刘家鑫, 魏 霞, 邓天宇, 等.绵羊全基因组ROH检测及候选基因鉴定[J].畜牧兽医学报, 2019, 50(8):1554-1566.LIU J X, WEI X, DENG T Y, et al.Genome-wide scan for run of homozygosity and identification of corresponding candidate genes in sheep populations[J].Acta Veterinaria et Zootechnica Sinica, 2019, 50(8):1554-1566.(in Chinese) |
[12] | GORSSEN W, MEYERMANS R, JANSSENS S, et al.A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species[J].Genet Sel Evol, 2021, 53(1):2. |
[13] | 赵国耀.基于肉牛基因组纯合片段的性状关联与预测[D].北京; 中国农业科学院, 2021.ZHAO G Y.Association and prediction of traits based on genomic homozygous segments in beef cattle[D].Beijing:Chinese Academy of Agricultural Sciences, 2021.(in Chinese) |
[14] | 杨湛澄, 黄河天, 闫青霞, 等.利用高密度SNP标记分析中国荷斯坦牛基因组近交[J].遗传, 2017, 39(1):41-47.YANG Z C, HUANG H T, YAN Q X, et al.Estimation of genomic inbreeding coefficients based on high-density SNP markers in Chinese Holstein cattle[J].Hereditas, 2017, 39(1):41-47.(in Chinese) |
[15] | PERIPOLLI E, STAFUZZA N B, MUNARI D P, et al.Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle[J].BMC Genomics, 2018, 19(1):34. |
[16] | NANI J P, PEÑAGARICANO F.Whole-genome homozygosity mapping reveals candidate regions affecting bull fertility in US Holstein cattle[J].BMC Genomics, 2020, 21(1):338. |
[17] | LIU D Y, CHEN Z L, ZHAO W, et al.Genome-wide selection signatures detection in Shanghai Holstein cattle population identified genes related to adaption, health and reproduction traits[J].BMC Genomics, 2021, 22(1):747. |
[18] | MAKANJUOLA B O, MALTECCA C, MIGLIOR F, et al.Identification of unique ROH regions with unfavorable effects on production and fertility traits in Canadian Holsteins[J].Genet Sel Evol, 2021, 53(1):68. |
[19] | LIU J X, SHI L Y, LI Y, et al.Estimates of genomic inbreeding and identification of candidate regions that differ between Chinese indigenous sheep breeds[J].J Anim Sci Biotechnol, 2021, 12(1):95. |
[20] | 史良玉, 王立刚, 张鹏飞, 等.不同来源大白猪总产仔数近交衰退评估[J].畜牧兽医学报, 2021, 52(10):2772-2782.SHI L Y, WANG L G, ZHANG P F, et al.Evaluation of inbreeding depression on the total numbers of piglets born in different groups of large white pigs[J].Acta Veterinaria et Zootechnica Sinica, 2021, 52(10):2772-2782.(in Chinese) |
[21] | 刘丽元.GWAS、CNV及ROH挖掘宁夏地区荷斯坦奶牛重要性状候选基因的研究[D].银川:宁夏大学, 2021.LIU L Y.Integrating GWAS, CNV and ROH analysis reveals candidate genes of important traits in Ningxia holstein cow[D]. Yinchuan:Ningxia University, 2021.(in Chinese) |
[22] | CHANG C C, CHOW C C, TELLIER L C A M, et al.Second-generation PLINK:rising to the challenge of larger and richer datasets[J].Gigascience, 2015, 4(1):7. |
[23] | YANG J A, LEE S H, GODDARD M E, et al.GCTA:a tool for genome-wide complex trait analysis[J].Am J Hum Genet, 2011, 88(1):76-82. |
[24] | ZHANG C, DONG S S, XU J Y, et al.PopLDdecay:a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files[J].Bioinformatics, 2019, 35(10):1786-1788. |
[25] | CUNNINGHAM F, ALLEN J E, ALLEN J, et al.Ensembl 2022[J].Nucleic Acids Res, 2022, 50(D1):D988-D995. |
[26] | BU D C, LUO H T, HUO P P, et al.KOBAS-i:intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis[J].Nucleic Acids Res, 2021, 49(W1):W317-W325. |
[27] | HOWARD J T, MALTECCA C, HAILE-MARIAM M, et al.Characterizing homozygosity across United States, New Zealand and Australian Jersey cow and bull populations[J].BMC Genomics, 2015, 16(1):187. |
[28] | MARRAS G, GASPA G, SORBOLINI S, et al.Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy[J].Anim Genet, 2015, 46(2):110-121. |
[29] | KELLER M C, VISSCHER P M, GODDARD M E.Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data[J].Genetics, 2012, 189(1):237-249. |
[30] | FERENCAKOVIC M, HAMZIC E, GREDLER B, et al.Runs of homozygosity reveal genome-wide autozygosity in the Austrian Fleckvieh cattle[J].Agric Conspec Sci, 2011, 76(4):325-329. |
[31] | ZHANG Q Q, CALUS M P L, GULDBRANDTSEN B, et al.Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds[J].BMC Genet, 2015, 16:88. |
[32] | FORUTAN M, MAHYARI S A, BAES C, et al.Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein cattle[J].BMC Genomics, 2018, 19(1):98. |
[33] | LOZADA-SOTO E A, TIEZZI F, JIANG J C, et al.Genomic characterization of autozygosity and recent inbreeding trends in all major breeds of US dairy cattle[J].J Dairy Sci, 2022, 105(11):8956-8971. |
[34] | JIANG J C, COLE J B, FREEBERN E, et al.Functional annotation and Bayesian fine-mapping reveals candidate genes for important agronomic traits in Holstein bulls[J].Commun Biol, 2019, 2(1):212. |
[35] | GHOREISHIFAR S M, ERIKSSON S, JOHANSSON A M, et al.Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds[J].Genet Sel Evol, 2020, 52(1):52. |
[36] | FANG L Z, CAI W T, LIU S L, et al.Comprehensive analyses of 723 transcriptomes enhance genetic and biological interpretations for complex traits in cattle[J].Genome Res, 2020, 30(5):790-801. |
[37] | ZHANG Y Y, XUE X L, LIU Y, et al.Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and Poll Dorset sheep[J].Sci Rep, 2021, 11(1):2466. |
[38] | WANG J F, LI B Z, YANG X R, et al.Integration of RNA-seq and ATAC-seq identifies muscle-regulated hub genes in cattle[J]. Front Vet Sci, 2022, 9:925590. |
[39] | SIGDEL A, BISINOTTO R S, PEÑAGARICANO F.Genes and pathways associated with pregnancy loss in dairy cattle[J].Sci Rep, 2021, 11(1):13329. |
[40] | ZHOU C H, LI C, CAI W T, et al.Genome-wide association study for milk protein composition traits in a chinese holstein population using a single-step approach[J].Front Genet, 2019, 10:72. |
[41] | FREITAS P H F, OLIVEIRA H R, SILVA F F, et al.Short communication:time-dependent genetic parameters and single-step genome-wide association analyses for predicted milk fatty acid composition in Ayrshire and Jersey dairy cattle[J].J Dairy Sci, 2020, 103(6):5263-5269. |
[42] | CHERUIYOT E K, BETT R C, AMIMO J O, et al.Signatures of selection in admixed dairy cattle in tanzania[J].Front Genet, 2018, 9:607. |
[43] | HAY E H, ROBERTS A.Genome-wide association study for carcass traits in a composite beef cattle breed[J].Livest Sci, 2018, 213:35-43. |
[44] | DE LAS HERAS-SALDANA S, CLARK S A, DUIJVESTEIJN N, et al.Combining information from genome-wide association and multi-tissue gene expression studies to elucidate factors underlying genetic variation for residual feed intake in Australian Angus cattle[J].BMC Genomics, 2019, 20(1):939. |
[45] | MOTA L F M, SANTOS S W B, JÚNIOR G A F, et al.Meta-analysis across Nellore cattle populations identifies common metabolic mechanisms that regulate feed efficiency-related traits[J].BMC Genomics, 2022, 23(1):424. |
[1] | TANG Xinxin, ZHENG Jumei, LUO Na, YING Fan, ZHU Dan, LI Sen, LIU Dawei, AN Bingxing, WEN Jie, ZHAO Guiping, LI Hegang. Genetic Mechanism of Broiler Leg Disease Based on Genome-Wide Association Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 99-109. |
[2] | YANG Qing, GONG Jing, ZHAO Xueyan, ZHU Xiaodong, GENG Liying, ZHANG Chuansheng, WANG Jiying. Comparison of Array and Resequencing in Pig Genetic Structure Studies [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2772-2782. |
[3] | ZHANG Xiaoke, LIAO Weili, CHEN Xinyou, LI Tingting, YUAN Xiaolong, LI Jiaqi, HUANG Xiang, ZHANG Hao. Genome-wide Association Study for Identifying Candidate Genes of Growth Traits in Duroc Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1868-1876. |
[4] | ZHANG Changzheng, LI Desen, HUANG Min, FANG Xiaomin, ZHAO Weimin, REN Shouwen, DONG Huansheng, REN Jun, ZHOU Lisheng. An Imputed Whole-genome Sequence-based GWAS Approach Pinpoints Genetic Loci for Body Conformation at Birth and Teat Number Traits in Sushan Pig Population [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 88-102. |
[5] | TAO Wei, HOU Liming, WANG Binbin, LIU Hang, LI Kaijun, YIN Yanzhen, GUO Hao, NIU Peipei, ZHANG Zongping, LI Qiang, HUANG Ruihua, LI Pinghua. Identification of Candidate Genes Affecting Drip Loss in Pork by Genome-wide Selection Signal Method [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1373-1383. |
[6] | LU Yujie, MO Jiayuan, QI Wenjing, ZHU Siran, YANG Lili, LIU Qiaoling, BU Yage, LAN Ganqiu, LIANG Jing. Population Genetic Structure and Selection Signatures Associated with Litter Size Trait in Several Chinese Indigenous Pig Breeds [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 360-369. |
[7] | SU Dingran, PENG Peng, YAN Qingxia, CHEN Shaohu, ZHANG Shengli, LI Jiao, LIU Chousheng, SUN Dongxiao. Analysis of the Effects for Genomic Selection in Holstein Young Bulls in China [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1550-1562. |
[8] | MI Bunong, ZHANG Liguo, BAI Urhan, GUO Yulin, WANG Chunwei, XU Quanzhong, FENG Shuang, LI Guangpeng, SU Xiaohu, ZHANG Li. Genome-wide Association Study of Milk Production Traits in Dairy Meade Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(11): 3294-3303. |
[9] | Lü Shijie, CHEN Fuying, JIN Lei, ZHANG Zijing, ZHU Xiaoting, SHI Qiaoting, XIN Xiaoling, CHU Qiuxia, BAI Zhonglin, WANG Eryao, XU Zhaoxue. Identification of Growth-Related Genes under Selection in Angus Cattle Using SLAF-seq [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(4): 713-721. |
[10] | DENG Tianyu, FAN Hongying, DU Lixin, ZHAO Fuping, WANG Lixian. Differential Expression Analysis of Important Candidate Genes mRNA Related to Fat in Hulun Buir Sheep [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(9): 1926-1935. |
[11] | LIU Jiaxin, WEI Xia, DENG Tianyu, XIE Rui, HAN Jianlin, DU Lixin, ZHAO Fuping, WANG Lixian. Genome-wide Scan for Run of Homozygosity and Identification of Corresponding Candidate Genes in Sheep Populations [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(8): 1554-1566. |
[12] | CHENG Zhimin, ZHANG Ningfang, WANG Yuanyuan, LE Baoyu, ZHANG Wanfeng, SONG Pengkang, GUO Xiaohong, GAO Pengfei, CAI Chunbo, CAO Guoqing, LI Bugao. Screening of Candidate Genes for Muscle Fiber Characteristics in Pig Using RNA-Seq [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(5): 918-929. |
[13] | WANG Cheng-bin, WANG Xiao-peng, ZHENG Xiao-ming, CHEN Hao, ZHANG Jun-jie, GUO Yuan-mei, DING Neng-shui. A Study of the Genetic Mechanisms for Two Head Types in Yushan Black Pigs [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(8): 1585-1593. |
[14] | SHI Liang-yu, ZHANG Rui-qiang, LI Xiang, Serafino Musa Abdelkarim Augustino, Muhammad Zahoor Khan, LIU Lin, XIAO Wei, TANG Shao-qing, ZHANG Yi, WANG Ya-chun, YU Ying. Heritability Estimation of SCS Difference and Its Variation in Chinese Holstein Cattle in Beijing [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(5): 935-941. |
[15] | SHE Ping-chang,WU Xiao-yun,LIANG Chun-nian,CHU Min,DING Xue-zhi,YAN Ping. Screening of Candidate Genes for Horn Trait of Yak [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(6): 1147-1153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||