Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (1): 95-106.doi: 10.11843/j.issn.0366-6964.2025.01.009
• Review • Previous Articles Next Articles
ZHANG Su(), SUN Lifang, LI Lanlan, WU Linjiao, CHEN Leiqing, WU Yunkun*(
)
Received:
2024-03-11
Online:
2025-01-23
Published:
2025-01-18
Contact:
WU Yunkun
E-mail:zs17630926690@163.com;wuyk@fjnu.cn
CLC Number:
ZHANG Su, SUN Lifang, LI Lanlan, WU Linjiao, CHEN Leiqing, WU Yunkun. Research Progress on the Interactions of African Swine Fever Virus Structural Proteins with Host Proteins[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 95-106.
Table 1
Interaction between ASFV structural proteins and host proteins"
病毒蛋白 Viral protein | 蛋白类别 Protein categories | 编码基因 Coding gene | 互作宿主蛋白 Interacting host proteins | 互作机制 Interaction mechanism | 参考文献 Reference |
P30 | 内囊膜蛋白 Inner envelopeprotein | CP204L | hn-RNP-K、DAB2等 | 影响正常核质运输;吸附宿主细胞、释放成熟病毒粒子;激活MAPK通路;抑制STATI磷酸化等 Affects normal nucleoplasmic transport; adsorbs host cells, releases mature viral particles; activates MAPK pathway; inhibits STATI phosphorylation, etc. | [ |
CD2V | 外囊膜蛋白 Outer envelopeprotein | EP402R | AP-1、CSF2RA、HIP-55 | 利用网格蛋白进行迁移;影响细胞内吞或蛋白质运输;激活JAK2-STAT3通路 Migration using lattice proteins; affects endocytosis or protein transport; activates JAK2-STAT3 pathway | [ |
P54 | 内囊膜蛋白 Inner envelopeprotein | E183L | DLC8 | 利用微管动力蛋白运输,激活caspase-9和caspase-3,诱导细胞凋亡 Induction of apoptosis by activation of caspase-9 and caspase-3 using microtubule dynamin transport | [ |
P72 | 衣壳蛋白 Capsid protein | B646L | OAS1 | 泛素化P72蛋白;抑制avSG的产生 Ubiquitination of P72 protein; inhibition of avSG production | [ |
P17 | 内囊膜蛋白 Inner envelope protein | D117L | STING、TOMM70 | 负调控cGAS-STING信号通路;促使线粒体自噬 Negative regulation of the cGAS-STING signaling pathway; Promotes mitochondrial autophagy | [ |
P14.5 | 衣壳蛋白 Capsid protein | E120R | IRF3、Kinesin等 | 干扰IRF3的磷酸化和Ⅰ型干扰素的生成;介导成熟的病毒粒子离开病毒工厂进入胞浆膜 Interferes with IRF3 phosphorylation and type Ⅰ interferon production; mediates the exit of mature viral particles from the viral factory into the plasma membrane | [ |
P11.5 | 衣壳蛋白 Capsid protein | A137R | TANK结合激酶 | 降解TANK,阻断INF-β的产生 Degradation of TANK and blocking of INF-β production | [ |
1 |
DIXON L K , CHAPMAN D A G , NETHERTON C L , et al. African swine fever virus replication and genomics[J]. Virus Res, 2013, 173 (1): 3- 14.
doi: 10.1016/j.virusres.2012.10.020 |
2 |
PENRITH M L , VOSLOO W , JORI F , et al. African swine fever virus eradication in Africa[J]. Virus Res, 2013, 173 (1): 228- 246.
doi: 10.1016/j.virusres.2012.10.011 |
3 |
LIU Y J , ZHANG X H , QI W B , et al. Prevention and control strategies of african swine fever and progress on pig farm repopulation in China[J]. Viruses, 2021, 13 (12): 2552.
doi: 10.3390/v13122552 |
4 |
张依玲, 易文毅, 肖静, 等. 非洲猪瘟的流行现状及防控措施[J]. 猪业科学, 2023, 40 (12): 90- 92.
doi: 10.3969/j.issn.1673-5358.2023.12.031 |
ZHANG Y L , YI W Y , XIAO J , et al. Epidemiology of African swine fever and preventive and control measures[J]. Swine Industry Science, 2023, 40 (12): 90- 92.
doi: 10.3969/j.issn.1673-5358.2023.12.031 |
|
5 |
ZHOU X T , LI N , LUO Y Z , et al. Emergence of African swine fever in China, 2018[J]. Transbound Emerg Dis, 2018, 65 (6): 1482- 1484.
doi: 10.1111/tbed.12989 |
6 |
GALINDO I , CUESTA-GEIJO M A , HLAVOVA K , et al. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis[J]. Virus Res, 2015, 200, 45- 55.
doi: 10.1016/j.virusres.2015.01.022 |
7 | ALEJO A , MATAMOROS T , GUERRA M , et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92 (23): e01293- 18. |
8 | 朱利敏, 邹兴启, 赵启祖. 非洲猪瘟病毒多样性[J]. 病毒学报, 2021, 37 (3): 719- 725. |
ZHU L M , ZOU X Q , ZHAO Q Z . Diversity of African swine fever virus[J]. Chinese Journal of Virology, 2021, 37 (3): 719- 725. | |
9 | JANCOVICH J K , CHAPMAN D , HANSEN D T , et al. Immunization of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins[J]. J Virol, 2018, 92 (8): e02219- 17. |
10 |
SÁNCHEZ E G , QUINTAS A , NOGAL M , et al. African swine fever virus controls the host transcription and cellular machinery of protein synthesis[J]. Virus Res, 2013, 173 (1): 58- 75.
doi: 10.1016/j.virusres.2012.10.025 |
11 |
ALCARAZ C , DE DIEGO M , PASTOR M J , et al. Comparison of a radioimmunoprecipitation assay to immunoblotting and ELISA for detection of antibody to African swine fever virus[J]. J Vet Diagn Invest, 1990, 2 (3): 191- 196.
doi: 10.1177/104063879000200307 |
12 |
OH T , DO D T , LAI D C , et al. Chronological expression and distribution of African swine fever virus p30 and p72 proteins in experimentally infected pigs[J]. Sci Rep, 2022, 12 (1): 4151.
doi: 10.1038/s41598-022-08142-y |
13 | 齐艳丽, 刘桃雪, 于海深, 等. 非洲猪瘟病毒p54蛋白单克隆抗体制备及其抗原表位鉴定[J]. 畜牧兽医学报, 2023, 54 (1): 281- 292. |
QI Y L , LIU T X , YU H S , et al. Preparation of the monoclonal antibody against the African swine fever virus p54 protein and identification of the antigenic epitope[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (1): 281- 292. | |
14 |
ALONSO C , MISKIN J , HERNAÁEZ B , et al. African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein[J]. J Virol, 2001, 75 (20): 9819- 9827.
doi: 10.1128/JVI.75.20.9819-9827.2001 |
15 | 矫健, 李建达, 韩先杰, 等. 非洲猪瘟病毒p22蛋白单克隆抗体的制备及鉴定[J]. 山东农业科学, 2023, 55 (10): 140- 145. |
JIAO J , LI J D , HAN X J , et al. Preparation and identification of monoclonal antibody against p22 protein of African swine fever virus[J]. Shandong Agricultural Sciences, 2023, 55 (10): 140- 145. | |
16 |
VUONO E A , RAMIREZ-MEDINA E , PRUITT S , et al. Evaluation of the function of the ASFV KP177R gene, encoding for structural protein p22, in the process of virus replication and in swine virulence[J]. Viruses, 2021, 13 (6): 986.
doi: 10.3390/v13060986 |
17 | 范婷婷. 非洲猪瘟病毒结构蛋白的免疫原性探索[D]. 北京: 中国农业科学院, 2021. |
FAN T T. Exploration of the immunogenicity of structural proteins of African swine fever virus[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese) | |
18 |
XIA N W , WANG H , LIU X L , et al. African swine fever virus structural protein p17 inhibits cell proliferation through ER stress—ROS mediated cell cycle arrest[J]. Viruses, 2020, 13 (1): 21.
doi: 10.3390/v13010021 |
19 |
LIU H L , WANG A P , YANG W R , et al. Expression of extracellular domain of ASFV CD2v protein in mammalian cells and identification of B cell epitopes[J]. Virus Res, 2023, 323, 199000.
doi: 10.1016/j.virusres.2022.199000 |
20 |
KARGER A , PÉREZ-NÚÑEZ D , URQUIZA J , et al. An update on African swine fever virology[J]. Viruses, 2019, 11 (9): 864.
doi: 10.3390/v11090864 |
21 | 张敏. 非洲猪瘟病毒CD2v蛋白影响猪肺泡巨噬细胞功能的研究[D]. 哈尔滨: 东北农业大学, 2022. |
ZHANG M. Effects of African swine fever virus CD2v protein on porcine alveolar macrophages function[D]. Harbin: Northeast Agricultural University, 2022. (in Chinese) | |
22 | 田盼盼, 秦晓东, 宋金星, 等. 非洲猪瘟病毒CD2v蛋白的生物信息学分析及多表位疫苗的设计[J]. 中国兽医杂志, 2021, 57 (9): 1- 5. |
TIAN P P , QIN X D , SONG J X , et al. Bioinformatics analysis of African swine fever virus CD2v protein for design of a Multiepitope vaccine[J]. Chinese Journal of Veterinary Medicine, 2021, 57 (9): 1- 5. | |
23 |
PÉREZ-NÚÑEZ D , GARCÍA-URDIALES E , MARTÍNEZ-BONET M , et al. CD2v interacts with adaptor protein AP-1 during African swine fever infection[J]. PLoS One, 2015, 10 (4): e0123714.
doi: 10.1371/journal.pone.0123714 |
24 | 王彩霞, 冯春燕, 肖颖, 等. 基于非洲猪瘟病毒p72蛋白的阻断ELISA检测方法的建立及初步应用[J]. 中国兽医科学, 2021, 51 (11): 1341- 1347. |
WANG C X , FENG C Y , XIAO Y , et al. Establishment and preliminary application of a blocking ELISA based on p72 protein of African swine fever virus[J]. Chinese Veterinary Science, 2021, 51 (11): 1341- 1347. | |
25 |
HAKIZIMANA J N , NYABONGO L , NTIRANDEKURA J B , et al. Genetic analysis of African swine fever virus from the 2018 outbreak in south-eastern burundi[J]. Front Vet Sci, 2020, 7, 578474.
doi: 10.3389/fvets.2020.578474 |
26 |
LIU Q , MA B T , QIAN N C , et al. Structure of the African swine fever virus major capsid protein p72[J]. Cell Res, 2019, 29 (11): 953- 955.
doi: 10.1038/s41422-019-0232-x |
27 |
CHEN X N , CHEN X J , LIANG Y F , et al. Interaction network of African swine fever virus structural protein p30 with host proteins[J]. Front Microbiol, 2022, 13, 971888.
doi: 10.3389/fmicb.2022.971888 |
28 |
WANG N , ZHAO D M , WANG J L , et al. Architecture of African swine fever virus and implications for viral assembly[J]. Science, 2019, 366 (6465): 640- 644.
doi: 10.1126/science.aaz1439 |
29 |
ZHANG Y , MAO D L , ROSWIT W T , et al. PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection[J]. Nat Immunol, 2015, 16 (12): 1215- 1227.
doi: 10.1038/ni.3279 |
30 |
IWATA H , GOETTSCH C , SHARMA A , et al. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation[J]. Nat Commun, 2016, 7 (1): 12849.
doi: 10.1038/ncomms12849 |
31 |
BOLZE A , MAHLAOUI N , BYUN M , et al. Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia[J]. Science, 2013, 340 (6135): 976- 978.
doi: 10.1126/science.1234864 |
32 |
WU Y H , TAN X D , LIU P , et al. ITGA6 and RPSA synergistically promote pancreatic cancer invasion and metastasis via PI3K and MAPK signaling pathways[J]. Exp Cell Res, 2019, 379 (1): 30- 47.
doi: 10.1016/j.yexcr.2019.03.022 |
33 |
ORIHUELA C J , MAHDAVI J , THORNTON J , et al. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models[J]. J Clin Invest, 2009, 119 (6): 1638- 1646.
doi: 10.1172/JCI36759 |
34 | ZHU Z X , LI W W , ZHANG X L , et al. Foot-and-mouth disease virus capsid protein VP1 interacts with host ribosomal protein SA To maintain activation of the MAPK signal pathway and promote virus replication[J]. J Virol, 2020, 94 (3): e01350- 19. |
35 |
BACKE P H , MESSIAS A C , RAVELLI R B G , et al. X-Ray crystallographic and NMR studies of the third KH domain of hnRNP K in complex with single-stranded nucleic acids[J]. Structure, 2005, 13 (7): 1055- 1067.
doi: 10.1016/j.str.2005.04.008 |
36 |
BOMSZTYK K , DENISENKO O , OSTROWSKI J . hnRNP K: one protein multiple processes[J]. BioEssays, 2004, 26 (6): 629- 638.
doi: 10.1002/bies.20048 |
37 |
FORD L P , WRIGHT W E , SHAY J W . A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation[J]. Oncogene, 2002, 21 (4): 580- 583.
doi: 10.1038/sj.onc.1205086 |
38 |
HERNAEZ B , ESCRIBANO J M , ALONSO C . African swine fever virus protein p30 interaction with heterogeneous nuclear ribonucleoprotein K (hnRNP-K) during infection[J]. FEBS Lett, 2008, 582 (23-24): 3275- 3280.
doi: 10.1016/j.febslet.2008.08.031 |
39 |
DEJGAARD K , LEFFERS H . Characterisation of the nucleic-acid-binding activity of KH domains different properties of different domains[J]. Eur J Biochem, 1996, 241 (2): 425- 431.
doi: 10.1111/j.1432-1033.1996.00425.x |
40 |
ALFONSO P , RIVERA J , HERNÁEZ B , et al. Identification of cellular proteins modified in response to African swine fever virus infection by proteomics[J]. Proteomics, 2004, 4 (7): 2037- 2046.
doi: 10.1002/pmic.200300742 |
41 |
NAKATSU F , OHNO H . Adaptor protein complexes as the key regulators of protein sorting in the post-golgi network[J]. Cell Struct Funct, 2003, 28 (5): 419- 429.
doi: 10.1247/csf.28.419 |
42 |
LAGUETTE N , BRÉGNARD C , BENICHOU S , et al. Human immunodeficiency virus (HIV) type-1, HIV-2 and simian immunodeficiency virus Nef proteins[J]. Mol Aspects Med, 2010, 31 (5): 418- 433.
doi: 10.1016/j.mam.2010.05.003 |
43 |
MADRID R , JANVIER K , HITCHIN D , et al. Nef-induced alteration of the early/recycling endosomal compartment correlates with enhancement of HIV-1 infectivity[J]. J Biol Chem, 2005, 280 (6): 5032- 5044.
doi: 10.1074/jbc.M401202200 |
44 |
MORI Y , KOIKE M , MORIISHI E , et al. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway[J]. Traffic, 2008, 9 (10): 1728- 1742.
doi: 10.1111/j.1600-0854.2008.00796.x |
45 |
NETHERTON C L , MCCROSSAN M C , DENYER M , et al. African swine fever virus causes microtubule-dependent dispersal of the trans-golgi network and slows delivery of membrane protein to the PlasmaMembrane[J]. J Virol, 2006, 80 (22): 11385- 11392.
doi: 10.1128/JVI.00439-06 |
46 |
COSKUN M , SALEM M , PEDERSEN J , et al. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease[J]. Pharmacol Res, 2013, 76, 1- 8.
doi: 10.1016/j.phrs.2013.06.007 |
47 |
ZAIM Ö , DOǦANLAR O , BANU DOǦANLAR Z , et al. Novel synthesis naringenin-benzyl piperazine derivatives prevent glioblastoma invasion by inhibiting the hypoxia-induced IL6/JAK2/STAT3 axis and activating caspase-dependent apoptosis[J]. Bioorg Chem, 2022, 129, 106209.
doi: 10.1016/j.bioorg.2022.106209 |
48 |
LI X M , SUN J , PRINZ R A , et al. Inhibition of porcine epidemic diarrhea virus (PEDV) replication by A77 1726 through targeting JAK and Src tyrosine kinases[J]. Virology, 2020, 551, 75- 83.
doi: 10.1016/j.virol.2020.06.009 |
49 |
GAO Q , YANG Y L , LUO Y Z , et al. African swine fever virus envelope glycoprotein CD2v interacts with host CSF2RA to regulate the JAK2-STAT3 pathway and inhibit apoptosis to facilitate virus replication[J]. J Virol, 2023, 97 (4): e0188922.
doi: 10.1128/jvi.01889-22 |
50 |
LIU J , XU XU X N , FENG X Q , et al. Adenovirus-mediated delivery of bFGF small interfering RNA reduces STAT3 phosphorylation and induces the depolarization of mitochondria and apoptosis in glioma cells U251[J]. J Exp Clin Cancer Res, 2011, 30 (1): 80.
doi: 10.1186/1756-9966-30-80 |
51 |
FAZI B , COPE M J T V , DOUANGAMATH A , et al. Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1:structural and functional analysis[J]. J Biol Chem, 2002, 277 (7): 5290- 5298.
doi: 10.1074/jbc.M109848200 |
52 |
GLYVUK N , TSYTSYURA Y , THIEL C , et al. Disturbance of synaptic vesicle recycling resulting from deletion of a mammalian actin-binding protein, mAbp1[J]. Neurophysiology, 2007, 39 (4-5): 341- 342.
doi: 10.1007/s11062-007-0051-4 |
53 |
FUCINI R V , CHEN J L , SHARMA C , et al. Golgi vesicle proteins are linked to the assembly of an actin complex defined by mAbp1[J]. Mol Biol Cell, 2002, 13 (2): 621- 631.
doi: 10.1091/mbc.01-11-0547 |
54 |
YAMAZAKI H , TAKAHASHI H , AOKI T , et al. Molecular cloning and dendritic localization of rat SH3P7[J]. Eur J Neurosci, 2001, 14 (6): 998- 1008.
doi: 10.1046/j.0953-816x.2001.01727.x |
55 |
ROSENDALE M , VAN T , GRILLO-BOSCH D , et al. Functional recruitment of dynamin requires multimeric interactions for efficient endocytosis[J]. Nat Commun, 2019, 10 (1): 4462.
doi: 10.1038/s41467-019-12434-9 |
56 |
YAMADA E , BASTIE C C . Disruption of Fyn SH3 domain interaction with a proline-rich motif in liver kinase B1 results in activation of AMP-activated protein kinase[J]. PLoS One, 2014, 9 (2): e89604.
doi: 10.1371/journal.pone.0089604 |
57 |
KAY-JACKSON P C , GOATLEY L C , COX L , et al. The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7[J]. J Gen Virol, 2004, 85 (1): 119- 130.
doi: 10.1099/vir.0.19435-0 |
58 |
PFISTER K K , SHAH P R , HUMMERICH H , et al. Genetic analysis of the cytoplasmic dynein subunit families[J]. PLoS Genet, 2006, 2 (1): e1.
doi: 10.1371/journal.pgen.0020001 |
59 |
MALLIK R , PETROV D , LEX S A , et al. Building complexity: an in vitro study of cytoplasmic dynein with in vivo implications[J]. Curr Biol, 2005, 15 (23): 2075- 2085.
doi: 10.1016/j.cub.2005.10.039 |
60 |
ZAVALA-VARGAS D I , VISOSO-CARBAJAL G , CEDILLO-BARRÓN L , et al. Interaction of the Zika virus with the cytoplasmic dynein-1[J]. Virol J, 2023, 20 (1): 43.
doi: 10.1186/s12985-023-01992-6 |
61 |
HERNÁEZ B , DIÍAZ-GIL G , GARCIÍA-GALLO M , et al. The African swine fever virus dynein-binding protein p54 induces infected cell apoptosis[J]. FEBS Lett, 2004, 569 (1-3): 224- 228.
doi: 10.1016/j.febslet.2004.06.001 |
62 |
ZHU X J , FAN B C , ZHOU J M , et al. A high-throughput method to analyze the interaction proteins with p22 protein of African swine fever virus in vitro[J]. Front Vet Sci, 2021, 8, 719859.
doi: 10.3389/fvets.2021.719859 |
63 |
FISH I , BOISSINOT S . Functional evolution of the OAS1 viral sensor: insights from old world primates[J]. Infect Genet Evol, 2016, 44, 341- 350.
doi: 10.1016/j.meegid.2016.07.005 |
64 |
HUANG Y Z , ZHENG Y X , ZHOU Y , et al. OAS1, OAS2, and OAS3 contribute to epidermal keratinocyte proliferation by regulating cell cycle and augmenting IFN-1-induced jak1-signal transducer and activator of transcription 1 phosphorylation in psoriasis[J]. J Invest Dermatol, 2022, 142 (10): 2635- 2645.
doi: 10.1016/j.jid.2022.02.018 |
65 |
SUN H L , WU M L , ZHANG Z H , et al. OAS1 suppresses African swine fever virus replication by recruiting TRIM21 to degrade viral major capsid protein[J]. J Virol, 2023, 97 (10): e0121723.
doi: 10.1128/jvi.01217-23 |
66 |
GAO L , LIU R , YANG F C , et al. Duck enteritis virus inhibits the cGAS-STING DNA-sensing pathway to evade the innate immune response[J]. J Virol, 2022, 96 (24): e0157822.
doi: 10.1128/jvi.01578-22 |
67 |
ZHENG W L , XIA N W , ZHANG J J , et al. African swine fever virus structural protein p17 inhibits cGAS-STING signaling pathway through interacting with STING[J]. Front Immunol, 2022, 13, 941579.
doi: 10.3389/fimmu.2022.941579 |
68 |
HU B L , ZHONG G F , DING S X , et al. African swine fever virus protein p17 promotes mitophagy by facilitating the interaction of SQSTM1 with TOMM70[J]. Virulence, 2023, 14 (1): 2232707.
doi: 10.1080/21505594.2023.2232707 |
69 |
LIU H S , ZHU Z X , FENG T , et al. African swine fever virus E120R protein inhibits interferon beta production by interacting with IRF3 to block its activation[J]. J Virol, 2021, 95 (18): e0082421.
doi: 10.1128/JVI.00824-21 |
70 | 崔帅, 王洋, 郭晓宇, 等. 利用酵母双杂交技术筛选和鉴定非洲猪瘟病毒E120R蛋白的互作宿主蛋白[J]. 中国畜牧兽医, 2022, 49 (11): 4139- 4149. |
CUI S , WANG Y , GUO X Y , et al. Screening and identification of the host proteins interacting with African swine fever virus E120R protein using yeast two-hybrid[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49 (11): 4139- 4149. | |
71 |
JOUVENET N , MONAGHAN P , WAY M , et al. Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin[J]. J Virol, 2004, 78 (15): 7990- 8001.
doi: 10.1128/JVI.78.15.7990-8001.2004 |
72 |
SUN M W , YU S X , GE H L , et al. The A137R protein of African swine fever virus inhibits type Ⅰ interferon production via the autophagy-mediated lysosomal degradation of TBK1[J]. J Virol, 2022, 96 (9): e0195721.
doi: 10.1128/jvi.01957-21 |
[1] | LIU Hang, WANG Huanhuan, GE Ying, ZHANG Lei, ZHANG Weiwu, WEI Yinghui, LI Qinghai, FAN Jinghui, ZHANG Xuedong. Screening of Candidate Genes of Skin Color of Black-Bone Chicken Based on Transcriptome and Proteome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2320-2329. |
[2] | DUAN Zhiqiang, XIE Lingling, CHEN Jiaqi, TANG Hong, WANG Yanbi, ZHAO Caiqin, ZHAO Jiafu. Research Progress on the Interactions of Newcastle Disease Virus M Protein with Host Proteins [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 32-42. |
[3] | WANG Tianyu, LI Zhiwei, YANG Ting, DONG Linfang, MA Zhiqian, BIANBA Ciren, XIAO Shuqi, LI Shuang. Screening and Identification of Nanobodies against Porcine Epidemic Diarrhea Virus S Protein [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2589-2598. |
[4] | ZHAO Xiao, ZHANG Xia, FAN Li, YANG Zhong, HUO Jinlong, ZENG Ribin, LIU Lixian, HUO Hailong. Isolation, Expression and Subcellular Localization of Spermatogenesis Candidate Gene PYGO2 in Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2491-2499. |
[5] | ZHAO Caiqin, WANG Yanbi, ZHU Jie, TANG Hong, DONG Yuntao, DUAN Zhiqiang. Sequence Analysis and Interaction Verification of Chicken TRAF6 and TIFA Proteins [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1511-1522. |
[6] | YANG Wenbing, ZOU Yawen, JIANG Yifan, YU Wanting, YANG Yi, WU Jing, WANG Naidong. Advances Research on African Swine Fever Serological Diagnostic Targets [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(5): 1208-1217. |
[7] | HU Yan, DUAN Zhiqiang, JI Xinqin, ZHAO Jiafu, DENG Shanshan, LI Shijing, XIONG Jianmin. Characterization of the Interaction between Newcastle Disease Virus Matrix Protein and Chicken Importin β1 Protein by GST Pull-down Assay [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(1): 126-133. |
[8] | YANG Wei, WEI Guan-dong, TANG De-yuan, ZENG Zhi-yong, HUANG Tao, WANG Bin, HU Ling-ling, LONG Dong-mei, HUANG Qiu-han, LIAO Xiao-kang, TIAN Hong-yu. Japanese Encephalitis Virus Virulent Strains and Attenuated Strains of Non-Structural Proteins NS1, NS2A and NS1-NS2A Induce Mouse CD4+ T Cell Responses [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(8): 1693-1700. |
[9] | LI Hong-jie, WANG Xiao-xue, GAO Dong-sheng, HUANG Hui-min, CHEN Lu, CHANG Hong-tao, WANG Chuan-qing, LI Yong-tao, ZHAO Jun. Subcellular Localization and Effect on Type Ⅰ Interferon Response of Porcine Epidemic Diarrhea Virus Nsp7 [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(3): 501-507. |
[10] | WEN Gui-lan ZHANG Han-song, HU Hong-xia, ZHANG Xian, ZHANG Yi, WANG Xiao-du, LI Xiao-liang, FANG Wei-huan. Analysis of Nsp2 Expression in Porcine Reproductive and Respiratory Syndrome Virus Infected Cells [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(7): 1109-1116. |
[11] | ZHANG Song-lin, SHEN Zhi-qiang, LIU Lei, MA Yong-biao, LIU Ji-shan. Advance on Biological Functions of Structural and Non-structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2012, 43(11): 1683-1696. |
[12] | FU Yuan-fang;LU Zeng-jun;TIAN Mei-na;ZHANG Xiao-li;LIU Zai-xin;CAI Xue-peng. Expression of Major B-cell Epitopes within 2C Non-structural Protein of FMDV and Its Bioactivity [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2008, 39(9): 1235-1239. |
[13] | YU Tian-fei;;QIU Zheng;MA Bo;YUAN Shuai-zhen;;LI Li;WANG Jun-wei. Localization of Linear B-cell Epitopes on Goose Parvovirus Non-structural Protein and Structural Protein [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2008, 39(6): 757-763. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||