[1] |
LIANG W, ZHOU D N, GENG C, et al. Isolation and evolutionary analyses of porcine epidemic diarrhea virus in Asia[J]. PeerJ, 2020, 8:e10114.
|
[2] |
ZHNAG L P, LIU X S, ZHANG Q L, et al. Biological characterization and pathogenicity of a newly isolated Chinese highly virulent genotype GIIa porcine epidemic diarrhea virus strain[J]. Arch Virol, 2019, 164(5):1287-1295.
|
[3] |
GUO J H, FANG L R, YE X, et al. Evolutionary and genotypic analyses of global porcine epidemic diarrhea virus strains[J]. Transbound Emerg Dis, 2019, 66(1):111-118.
|
[4] |
LEE D K, PARK C K, KIM S H, et al. Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea[J]. Virus Res, 2010, 149(2):175-182.
|
[5] |
ZANG Y, TIAN Y, LI Y G, et al. Recombinant Lactobacillus acidophilus expressing S1 and S2 domains of porcine epidemic diarrhea virus could improve the humoral and mucosal immune levels in mice and sows inoculated orally[J]. Vet Microbiol, 2020, 248:108827.
|
[6] |
YU J, CHAI X L, CHENG Y, et al. Molecular characteristics of the spike gene of porcine epidemic diarrhoea virus strains in Eastern China in 2016[J]. Virus Res, 2018, 247:47-54.
|
[7] |
SUN D B, FENG L, SHI H Y, et al. Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein[J]. Vet Microbiol, 2008, 131(1-2):73-81.
|
[8] |
HOU Y X, LIN C M, YOKOYAMA M, et al. Deletion of a 197-amino-acid region in the N-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets[J]. J Virol, 2017, 91(14):e00227-17.
|
[9] |
SUZUKI T, TERADA Y, ENJUANES L, et al. S1 subunit of spike protein from a current highly virulent porcine epidemic diarrhea virus is an important determinant of virulence in piglets[J]. Viruses, 2018, 10(9):467.
|
[10] |
TSAI K J, DENG M C, WANG F I, et al. Deletion in the S1 region of porcine epidemic diarrhea virus reduces the virulence and influences the virus-neutralizing activity of the antibody induced[J]. Viruses, 2020, 12(12):1378.
|
[11] |
HSUEH F C, LIN C N, CHIOU H Y, et al. Updated phylogenetic analysis of the spike gene and identification of a novel recombinant porcine epidemic diarrhoea virus strain in Taiwan[J]. Transbound Emerg Dis, 2020, 67(1):417-430.
|
[12] |
HAMERS-CASTERMAN C, ATARHOUCH T, MUYLDERMNS S, et al. Naturally occurring antibodies devoid of light chains[J]. Nature, 1993, 363(6428):446-448.
|
[13] |
MUYLDERMANS S, BARAL T N, RETAMOZZO V C, et al. Camelid immunoglobulins and nanobody technology[J]. Vet Immunol Immunopathol, 2009, 128(1-3):178-183.
|
[14] |
SALVADOR J P, VILAPLANA L, MARCO M P. Nanobody:outstanding features for diagnostic and therapeutic applications[J]. Anal Bioanal Chem, 2019, 411(9):1703-1713.
|
[15] |
YANG S L, LI L, YIN S H, et al. Single-domain antibodies as promising experimental tools in imaging and isolation of porcine epidemic diarrhea virus[J]. Appl Microbiol Biotechnol, 2018, 102(20):8931-8942.
|
[16] |
BANNAS P, HAMBACH J, KOCH-NOLTE F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics[J]. Front Immunol, 2017, 8:1603.
|
[17] |
JI P P, ZHU J H, LI X X, et al. Fenobody and RANbody-based sandwich enzyme-linked immunosorbent assay to detect Newcastle disease virus[J]. J Nanobiotechnol, 2020, 18(1):44.
|
[18] |
SUN R Q, CAI R J, CHEN Y Q, et al. Outbreak of porcine epidemic diarrhea in suckling piglets, China[J]. Emerg Infect Dis, 2012, 18(1):161-163.
|
[19] |
LI W T, LI H, LIU Y B, et al. New variants of porcine epidemic diarrhea virus, China, 2011[J]. Emerg Infect Dis, 2012, 18(8):1350-1353.
|
[20] |
LIN C M, SAIF L J, MARTHALER D, et al. Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains[J]. Virus Res, 2016, 226:20-39.
|
[21] |
QI M P, ZAMBRANO-MORENO C, PINEDA P, et al. Several lineages of porcine epidemic diarrhea virus in Colombia during the 2014 and 2016 epidemic[J/OL]. Transboundary and Emerging Diseases, 2020, doi:10. 1111/tbed. 13914.
|
[22] |
DUBEY A, DAHIYA S, ROUSE B T, et al. Perspective:Reducing SARS-CoV2 infectivity and its associated immunopathology[J]. Front Immunol, 2020, 11:581076.
|
[23] |
CUSTÓDIO T F, DAS H, SHEWARD D J, et al. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2[J]. Nat Commun, 2020, 11(1):5588.
|
[24] |
WANG L Z, ZHANG L, HUANG B C, et al. A nanobody targeting viral nonstructural protein 9 inhibits porcine reproductive and respiratory syndrome virus replication[J]. J Virol, 2019, 93(4):e01888-18.
|
[25] |
BAO F X, WANG L X, ZHAO X X, et al. Preparation and characterization of a single-domain antibody specific for the porcine epidemic diarrhea virus spike protein[J]. AMB Express, 2019, 9(1):104.
|
[26] |
DELFIN-RIELA T, ROSSOTT M, ALVEZ-ROSADO R, et al. Highly sensitive detection of Zika virus nonstructural protein 1 in serum samples by a two-site nanobody ELISA[J]. Biomolecules, 2020, 10(12):1652.
|
[27] |
SHENG Y M, WANG K, LU Q Z, et al. Nanobody-horseradish peroxidase fusion protein as an ultrasensitive probe to detect antibodies against Newcastle disease virus in the immunoassay[J]. J Nanobiotechnol, 2019, 17(1):35.
|
[28] |
LU Q, LI X, ZHAO J, et al. Nanobody-horseradish peroxidase and -EGFP fusions as reagents to detect porcine parvovirus in the immunoassays[J]. J Nanobiotechnol, 2020, 18(1):7.
|
[29] |
DU T, ZHU G, WU X, et al. Biotinylated single-domain antibody-based blocking ELISA for detection of antibodies against swine influenza virus[J]. Int J Nanomed, 2019, 14:9337-9349.
|
[30] |
MA Z Q, WANG T Y, LI Z W, et al. A novel biotinylated nanobody-based blocking ELISA for the rapid and sensitive clinical detection of porcine epidemic diarrhea virus[J]. J Nanobiotechnol, 2019, 17(1):96.
|