Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (10): 4670-4678.doi: 10.11843/j.issn.0366-6964.2024.10.038
• Basic Veterinary Medicine • Previous Articles Next Articles
Qingxin YUAN1(), Kuo LIU1, Xuhua BAO1, Dongyang GAO1, He LI1, Jun SONG1,*(
), Zhixin ZHOU2,*(
)
Received:
2023-12-08
Online:
2024-10-23
Published:
2024-11-04
Contact:
Jun SONG, Zhixin ZHOU
E-mail:yuanqingxin_2000@126.com;songjun_2005@126.com;Z2855877761@126.com
CLC Number:
Qingxin YUAN, Kuo LIU, Xuhua BAO, Dongyang GAO, He LI, Jun SONG, Zhixin ZHOU. The Mechanism of Chelerythrine against Methicillin-resistant Staphylococcus aureus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4670-4678.
Fig. 4
The effect of CHE on the activity of ROS related factors in MRSA A. The effect of CHE on the MDA content of MRSA strain; B. The effect of CHE on the SDH activity of MRSA strain; C. The effect of CHE on T-AOC activity of MRSA strain; D. The effect of CHE on the CAT activity of MRSA strain.**.P < 0.01"
Table 3
The top 20 annotated results of differentially expressed genes in KEGG database"
通路Pathway | 一级分类Level 1 | 上调Up | 下调Down |
核糖体 Ribosome | 遗传信息处理 Genetic information processing | 0 | 49 |
光合作用Photosynthesis | 新陈代谢Metabolism | 0 | 8 |
精氨酸生物合成Arginine biosynthesis | 新陈代谢Metabolism | 6 | 8 |
半乳糖代谢Galactose metabolism | 新陈代谢Metabolism | 14 | 0 |
RNA聚合酶 RNA polymerase | 遗传信息处理 Genetic information processing | 0 | 5 |
细菌分泌系统 Bacterial secretion system | 环境信息处理 Environmental information processing | 4 | 6 |
双组分系统 Two-component system | 环境信息处理 Environmental information processing | 21 | 22 |
阳离子抗菌肽(CAMP)耐药性 Cationic antimicrobial peptide (CAMP) resistance | 人类疾病 Human diseases | 3 | 6 |
生物素代谢Biotin metabolism | 新陈代谢Metabolism | 5 | 3 |
O-抗原核苷酸糖生物合成 O-antigen nucleotide sugar biosynthesis | 新陈代谢 Metabolism | 7 | 2 |
阿特拉津降解Atrazine degradation | 新陈代谢Metabolism | 3 | 0 |
各种次生代谢产物的生物合成—第3部分 Biosynthesis of various secondary metabolites-part 3 | 新陈代谢 Metabolism | 2 | 1 |
C5支链二元酸代谢 C5-branched dibasic acid metabolism | 新陈代谢 Metabolism | 0 | 7 |
ABC转运蛋白 ABC transporters | 环境信息处理 Environmental information processing | 28 | 16 |
蛋白质外排 Protein export | 遗传信息处理 Genetic information processing | 4 | 6 |
氧化磷酸化Oxidative phosphorylation | 新陈代谢Metabolism | 0 | 13 |
β内酰胺耐药性β-Lactam resistance | 人类疾病Human diseases | 0 | 6 |
幽门螺杆菌感染中的上皮细胞信号传导 Epithelial cell signaling in helicobacter pylori infection | 人类疾病 Human diseases | 1 | 1 |
植物-病原体相互作用Plant-pathogen interaction | 生物系统Organismal systems | 0 | 2 |
群体感应Quorum sensing | 细胞过程Cellular processes | 22 | 11 |
1 |
CHEUNG G Y C , BAE J S , OTTO M . Pathogenicity and virulence of Staphylococcus aureus[J]. Virulence, 2021, 12 (1): 547- 569.
doi: 10.1080/21505594.2021.1878688 |
2 |
KARNAM S , JINDAL A B , AGNIHOTRI C , et al. Topical nanotherapeutics for treating MRSA-associated skin and soft tissue infection (SSTIs)[J]. AAPS PharmSciTech, 2023, 24 (5): 108.
doi: 10.1208/s12249-023-02563-2 |
3 |
HSIEH R C , LIU R , BURGIN D J , et al. Understanding mechanisms of virulence in MRSA: implications for antivirulence treatment strategies[J]. Expert Rev Anti Infect Ther, 2023, 21 (9): 911- 928.
doi: 10.1080/14787210.2023.2242585 |
4 | 周志新. 白屈菜红碱对耐甲氧西林金黄色葡萄球菌抗菌作用研究[D]. 大庆: 黑龙江八一农垦大学, 2023. |
ZHOU Z X. Research on the antibacterial effect of chelerythrine against methicillin-resistant Staphylococcus aureus[D]. Daqing: Heilongjiang Bayi Agricultural University, 2023. (in Chinese) | |
5 |
STOGIOS P J , SAVCHENKO A . Molecular mechanisms of vancomycin resistance[J]. Protein Sci, 2020, 29 (3): 654- 669.
doi: 10.1002/pro.3819 |
6 | 蒋庆佳, 杨放, 杨安迪, 等. 中药抑菌活性成分及其作用机制研究进展[J]. 中国抗生素杂志, 2023, 48 (8): 855- 861. |
JIANG Q J , YANG F , YANG A D , et al. Research progress of bacteriostatic mechanism of traditional Chinese medicine based on chemical components[J]. Chinese Journal of Antibiotics, 2023, 48 (8): 855- 861. | |
7 | 徐志杰. 白屈菜红碱PLGA纳米粒的制备及其体内药动学研究[J]. 中成药, 2022, 44 (10): 3091- 3097. |
XU Z J . Preparation and in vivo pharmacokinetics of chelerythrine PLGA nanoparticles[J]. Chinese Traditional Patent Medicine, 2022, 44 (10): 3091- 3097. | |
8 |
GIBBONS S , LEIMKUGEL J , OLUWATUYI M , et al. Activity of Zanthoxylum clava-herculis extracts against multi-drug resistant methicillin-resistant Staphylococcus aureus (mdr-MRSA)[J]. Phytother Res, 2003, 17 (3): 274- 275.
doi: 10.1002/ptr.1112 |
9 |
KHIN M , JONES A M , CECH N B , et al. Phytochemical analysis and antimicrobial efficacy of Macleaya cordata against extensively drug-resistant Staphylococcus aureus[J]. Nat Prod Commun, 2018, 13 (11)
doi: 10.1177/1934578X1801301117 |
10 |
WANG M Z , MA B , NI Y F , et al. Restoration of the antibiotic susceptibility of methicillin-resistant Staphylococcus aureus and extended-spectrum β-Lactamases Escherichia coli through combination with chelerythrine[J]. Microb Drug Resist, 2021, 27 (3): 337- 341.
doi: 10.1089/mdr.2020.0044 |
11 |
WANG P , ZHENG S Y , JIANG R L , et al. Necroptosis signaling and mitochondrial dysfunction cross-talking facilitate cell death mediated by chelerythrine in glioma[J]. Free Radic Biol Med, 2023, 202, 76- 96.
doi: 10.1016/j.freeradbiomed.2023.03.021 |
12 | 赵莹莹. MntC介导的白屈菜红碱抗金黄色葡萄球菌作用机制研究[D]. 郑州: 河南大学, 2021. |
ZHAO Y Y. Chelerythrine mediates bactericidal activity against Staphylococcus aureus by targeting protein MntC[D]. Zhengzhou: Henan University, 2021. (in Chinese) | |
13 |
QIAN W D , SUN Z H , FU Y T , et al. Efficacy of chelerythrine against dual-species biofilms of Staphylococcus aureus and Staphylococcus lugdunensis[J]. 3 Biotech, 2020, 10 (10): 427.
doi: 10.1007/s13205-020-02401-3 |
14 | 徐冬雪. 白屈菜红碱对变形链球菌形态学影响的电镜观察[D]. 沈阳: 中国医科大学, 2010. |
XU D X. Electron microscope investigation of morphologic effect of Chelerythrine on Streptococcus mutans[D]. Shenyang: China Medical University, 2010. (in Chinese) | |
15 |
MIAO F , YANG X J , ZHOU L , et al. Structural modification of sanguinarine and chelerythrine and their antibacterial activity[J]. Nat Prod Res, 2011, 25 (9): 863- 875.
doi: 10.1080/14786419.2010.482055 |
16 | 孙照欢. 白屈菜红碱对葡萄球菌的抗菌机制及脂质体的制备研究[D]. 西安: 陕西科技大学, 2021. |
SUN Z H. Antibacterial activity and its mechnism of action of chelerythrine against Staphylococcus and preparation of its liposome[D]. Xi'an: Shaanxi University of Science & Technology, 2021. (in Chinese) | |
17 |
宋军, 周志新, 付琳清, 等. 大黄酸对伪中间葡萄球菌的抗菌活性及作用机制[J]. 畜牧兽医学报, 2021, 52 (8): 2275- 2283.
doi: 10.11843/j.issn.0366-6964.2021.08.020 |
SONG J , ZHOU Z X , FU L Q , et al. Antimicrobial activity and mechanism of rhein against Staphylococcus pseudintermedius[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (8): 2275- 2283.
doi: 10.11843/j.issn.0366-6964.2021.08.020 |
|
18 |
操庆国, 郭钦, 彭凯, 等. 盐酸小檗碱与左氧氟沙星联合抑制MRSA及其机制研究[J]. 畜牧兽医学报, 2022, 53 (9): 3208- 3220.
doi: 10.11843/j.issn.0366-6964.2022.09.035 |
CAO Q G , GUO Q , PENG K , et al. The inhibition and mechanism of the combination of berberine hydrochloride and levofloxacin on MRSA[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (9): 3208- 3220.
doi: 10.11843/j.issn.0366-6964.2022.09.035 |
|
19 |
SONG J , XIA F F , JIANG H Y , et al. Identification and characterization of HolGH15:the holin of Staphylococcus aureus bacteriophage GH15[J]. J Gen Virol, 2016, 97 (5): 1272- 1281.
doi: 10.1099/jgv.0.000428 |
20 |
ZHAO Y , ZHANG T J , ZHOU C Y , et al. Development of an RT-PCR-based RspCas13d system to detect porcine deltacoronavirus[J]. Appl Microbiol Biotechnol, 2023, 107 (18): 5739- 5747.
doi: 10.1007/s00253-023-12690-2 |
21 |
LOE M W C , LEE R C H , CHIN W X , et al. Chelerythrine chloride inhibits Zika virus infection by targeting the viral NS4B protein[J]. Antiviral Res, 2023, 219, 105732.
doi: 10.1016/j.antiviral.2023.105732 |
22 |
CUI K Y , YANG W F , LIU Z Y , et al. Chenodeoxycholic acid-Amikacin combination enhances eradication of Staphylococcus aureus[J]. Microbiol Spectr, 2023, 11 (1): e0243022.
doi: 10.1128/spectrum.02430-22 |
23 | 刘武康, 吴淑燕, 陈国薇, 等. 细菌产生的活性氧及其功能[J]. 微生物学杂志, 2016, 36 (1): 89- 95. |
LIU W K , WU S Y , CHEN G W , et al. The reactive oxygen species generated by bacteria and its functions[J]. Journal of Microbiology, 2016, 36 (1): 89- 95. | |
24 |
ZHU X H , LIU H , WANG Z G , et al. Dimethyl phthalate damages Staphylococcus aureus by changing the cell structure, inducing oxidative stress and inhibiting energy metabolism[J]. J Environ Sci (China), 2021, 107, 171- 183.
doi: 10.1016/j.jes.2021.01.031 |
25 |
LEE B S , HARDS K , ENGELHART C A , et al. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis[J]. EMBO Mol Med, 2021, 13 (1): e13207.
doi: 10.15252/emmm.202013207 |
[1] | Shuo YANG, Min HUO, Zixuan SU, Yuxiang SHI. Research Progress on the Impact of Mitochondrial Quality Control on Oxidative Stress in Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3769-3776. |
[2] | Zijin YUAN, Wanxin WANG, Ya XING, Jiahui LI, Ying XUE, Jing GE, Minmeng ZHAO, Long LIU, Daoqing GONG, Tuoyu GENG. HDLBP Is Involved in Goose Fatty Liver Formation by Regulating the Level of Oxidative Stress and the Expression of Inflammatory Factors [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3897-3913. |
[3] | Xinman LIU, Hongyuan ZHOU, Rui SANG, Bingjie GE, Kexin YAN, Wei WANG, Minghong YU, Xiaotong LIU, Qian QIU, Xuemei ZHANG. Effect of Taraxasterol on Oxidative Stress in Liver Tissue of Broilers with AFB1 Induced Liver Injury [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4141-4152. |
[4] | Yaxuan MENG, Yan LIU, Jing WANG, Guoshun CHEN, Tao FENG. Research Progress in the Effect of Oxidative Stress on Ovarian Function in Female Livestock [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2825-2835. |
[5] | ZHANG Xinting, QIU Wenyue, PANG Xiaoyue, SU Yiman, YE Jiali, HUANG Jianjia, ZHOU Shuilian, TANG Zhaoxin, WANG Rongmei, SU Rongsheng. Effect of Asiatic Acid Alleviating Myocardial Injury Caused by Lipopolysaccharide through Inhibiting Oxidative Stress and Ferroptosis in Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1787-1799. |
[6] | JIANG Lijun, ZONG Yunhe, LI Yunlei, CHEN Jilan, GENG Zhaoyu, SUN Yanyan, JIN Sihua. Research Progress of Antioxidant Application in Poultry Semen Storage [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 913-923. |
[7] | WANG Xin, NIE Tong, LI Aqun, MA Jun. Hesperidin Alleviates High-fat-diet Induced Hepatic Oxidative Stress in Mice via Oxidative Phosphorylation Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1302-1313. |
[8] | CHEN Hong, RUAN Hongri, MA Tianwen, LI Yanan, MIAO Xue, YANG Wenyue, GAO Li, WEI Chengwei. The Mechanism of Puerarin Improving Cartilage Degeneration in PTOA Rats by Interfering with Oxidative Stress and Nrf2/HO-1 Pathway of Cartilage [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3951-3963. |
[9] | MAO Peng, WANG Zhihao, LI Jianji, CUI Luying, ZHU Guoqiang, MENG Xia, DONG Junsheng, WANG Heng. Research Progress of Ferroptosis in Bacterial Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2280-2287. |
[10] | HAN Xiuyuan, ZHAO Liang, WANG Chuang, QI Meiyu, YAO Yuchang. Nicotinic Acid Enhances Low Temperature Preservation of Sheep Sperm by Reducing Oxidative Stress Levels [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1979-1989. |
[11] | CHEN Yongping, KOU Yuhong, JIAO Wenjing, HOU Xiaoyu, FAN Honggang. Effect of Coenzyme Q10 on LPS-induced Acute Lung Injury in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1730-1741. |
[12] | XIAO Shiyu, LU Chang, MA Juan, WANG Chuang, QI Meiyu, YAO Yuchang. Effects of N-acetylcysteine [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1046-1057. |
[13] | PAN Chanyuan, ZHAO Zixuan, DUAN Mingjie, JIANG Linshu, TONG Jinjin. The Mechanism of Artemisia carvifolia Alleviating Dairy Cow Oxidative Stress Predicted by Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1071-1084. |
[14] | YANG Chengying, WANG Kai, HUANG Ziqing, LIN Hailan, WANG Naixiu, LI Yuhang, LIU Yanqing, LIU Yuxuan, ZHU Yan, HE Daoling, CHEN Hongyue, GAN Ling. Study on the Inhibitory Effect of Chito-oligosaccharide on Oxidative Stress inHippocampus of Piglets and Its Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 744-756. |
[15] | YANG Haotian, CHEN Yongping, WANG Zhiqiang, HUANG Yuxiang, MA Zhigang, ZOU Yue, WEI Niandong, ZHANG Hong, LI Xin, DONG Jiaqiang, LÜ Mingzhe, LI Hongbin, LIU Liwei, YANG Haoxuan, ZHANG Guohua, LIU Xuesong, ZHONG Peng, SHI Heye, KOU Yuhong, CHEN Zhifeng. Dexmedetomidine Inhibits NOX4 and Alleviates Acute Stress-induced Renal Injury in Rats [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 779-786. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||