Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (9): 3843-3852.doi: 10.11843/j.issn.0366-6964.2024.09.010
• Animal Genetics and Breeding • Previous Articles Next Articles
Dong CHEN1,2,3(), Wenxuan ZHOU1,2,3, Zhenjian ZHAO1,2,3, Qi SHEN1,2,3, Yang YU1,2,3, Shengdi CUI1,2,3, Junge WANG1,2,3, Ziyang CHEN1,2,3, Shixin YU1,2,3, Jiamiao CHEN1,2,3, Xiangfeng WANG1,2,3, Pingxian WU4, Zongyi GUO4, Jinyong WANG4, Guoqing TANG1,2,3,*(
)
Received:
2024-03-18
Online:
2024-09-23
Published:
2024-09-27
Contact:
Guoqing TANG
E-mail:1123278154@qq.com;tyq003@163.com
CLC Number:
Dong CHEN, Wenxuan ZHOU, Zhenjian ZHAO, Qi SHEN, Yang YU, Shengdi CUI, Junge WANG, Ziyang CHEN, Shixin YU, Jiamiao CHEN, Xiangfeng WANG, Pingxian WU, Zongyi GUO, Jinyong WANG, Guoqing TANG. Development of a Pig Intramuscular Fat Content and Eye Muscle Area Measurement System Based on Computer Vision Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3843-3852.
Fig. 3
Prediction results The two figures respectively represent the software's prediction results. Figure A shows the distribution of the prediction results, while Figure B displays the correlation analysis results of the prediction results, BIAS is the bias and MSE is the mean square error"
Table 1
Detection results of different individuals"
人员 Operator | 图像肌内脂肪含量/% GIMF | 个体肌内脂肪含量/% IIMF | 人员 Operator | 图像肌内脂肪含量/% GIMF | 个体肌内脂肪含量/% IIMF | |
1 | 2.406 735 480 | 1.618 247 778 | 8 | 2.323 755 739 | 1.541 928 333 | |
2 | 2.576 196 758 | 1.727 769 708 | 9 | 2.260 644 521 | 1.505 177 567 | |
3 | 2.139 185 500 | 1.427 452 048 | 10 | 2.377 014 720 | 1.578 316 452 | |
4 | 2.405 697 142 | 1.600 613 333 | 11 | 2.100 325 627 | 1.394 686 267 | |
5 | 2.237 215 417 | 1.490 058 625 | 12 | 2.164 272 131 | 1.434 557 074 | |
6 | 2.482 699 394 | 1.658 501 867 | 13 | 2.336 177 654 | 1.559 357 222 | |
7 | 2.336 177 654 | 1.559 357 222 |
Fig. 4
Backfat thickness and eye muscle area measurement The figures illustrate the operation of backfat thickness and eye muscle area detection in MIVHS. Figure A shows the interface for backfat thickness and eye muscle area measurement; Figure B displays the calculation results of the eye muscle area"
1 | 崔晟頔, 王凯, 赵真坚, 等. 利用GWAS和DNA甲基化共定位鉴定猪肉质性状的候选基因[J]. 畜牧兽医学报, 2024, 55 (5): 1945- 1957. |
CUI S D , WANG K , ZHAO Z J , et al. Identification of candidate genes for pork texture traits using GWAS combined with Co-localisation of DNA methylation[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (5): 1945- 1957. | |
2 |
DREWNOWSKI A . Perspective: the place of pork meat in sustainable healthy diets[J]. Adv Nutr, 2024, 15 (5): 100213.
doi: 10.1016/j.advnut.2024.100213 |
3 | 张润, 刘海, 杨曼, 等. 北京黑猪肌内脂肪含量高、低组间脂质组差异分析[J]. 畜牧兽医学报, 2022, 53 (9): 3262- 71. |
ZHANG R , LIU H , YANG M , et al. Analysis of lipidome difference between high and low intramuscular fat content groups in Beijing Black Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (9): 3262- 3271. | |
4 |
LIM K S , LEE K T , PARK J E , et al. Identification of differentially expressed genes in longissimus muscle of pigs with high and low intramuscular fat content using RNA sequencing[J]. Anim Genet, 2017, 48 (2): 166- 174.
doi: 10.1111/age.12518 |
5 |
GUO Z Y , CHEN X L , CHEN D W , et al. Effects of slaughter age on carcass traits and meat quality of crossbred (Duroc×Landrace×Yorkshire) finishing pigs[J]. Anim Biotechnol, 2022, 33 (2): 339- 345.
doi: 10.1080/10495398.2021.1916512 |
6 |
GONG X L , ZHENG M , ZHANG J , et al. Transcriptomics-based study of differentially expressed genes related to fat deposition in Tibetan and Yorkshire Pigs[J]. Front Vet Sci, 2022, 9, 919904.
doi: 10.3389/fvets.2022.919904 |
7 |
高振伟. 一种全自动测膘情和眼肌系统[J]. 湖北农机化, 2019, (21): 138.
doi: 10.3969/j.issn.1009-1440.2019.21.106 |
GAO Z W . A fully automated fat and eye muscle measurement system[J]. Hubei Agricultural Mechanization, 2019, (21): 138.
doi: 10.3969/j.issn.1009-1440.2019.21.106 |
|
8 |
FOLCH J , LEES M , SLOANE STANLEY G H . A simple method for the isolation and purification of total lipides from animal tissues[J]. J Biol Chem, 1957, 226 (1): 497- 509.
doi: 10.1016/S0021-9258(18)64849-5 |
9 | 杨海悦. 肌纤维内脂肪含量测定方法的建立及其与肌肉相关基因表达的相关分析[D]. 南京: 南京农业大学, 2021. |
YANG H Y. The establishment of a method for measuring intrafiber fat content and its correlation withmuscle-related genes[D]. Nanjing: Nanjing Agricultural University, 2021. (in Chinese) | |
10 |
LIN Y D , MA J , WANG Q J , et al. Applications of machine learning techniques for enhancing nondestructive food quality and safety detection[J]. Crit Rev Food Sci Nutr, 2023, 63 (12): 1649- 1669.
doi: 10.1080/10408398.2022.2131725 |
11 |
HE Y , BAI X L , XIAO Q L , et al. Detection of adulteration in food based on nondestructive analysis techniques: a review[J]. Crit Rev Food Sci Nutr, 2021, 61 (14): 2351- 2371.
doi: 10.1080/10408398.2020.1777526 |
12 |
ZHANG L H , ZHANG M , MUJUMDAR A S . Technological innovations or advancement in detecting frozen and thawed meat quality: a review[J]. Crit Rev Food Sci Nutr, 2023, 63 (11): 1483- 1499.
doi: 10.1080/10408398.2021.1964434 |
13 |
MUNEKATA P E S , FINARDI S , DE SOUZA C K , et al. Applications of electronic nose, electronic eye and electronic tongue in quality, safety and shelf life of meat and meat products: a review[J]. Sensors (Basel), 2023, 23 (2): 672.
doi: 10.3390/s23020672 |
14 |
TANG X , RAO L , XIE L , et al. Quantification and visualization of meat quality traits in pork using hyperspectral imaging[J]. Meat Sci, 2023, 196, 109052.
doi: 10.1016/j.meatsci.2022.109052 |
15 |
KATEMALA S , MOLEE A , THUMANU K , et al. A comparative study of meat quality and vibrational spectroscopic properties of different chicken breeds[J]. Poult Sci, 2022, 101 (6): 101829.
doi: 10.1016/j.psj.2022.101829 |
16 | FAN K J , SU W H . Applications of fluorescence spectroscopy, RGB- and MultiSpectral imaging for quality determinations of white meat: a review[J]. Biosensors (Basel), 2022, 12 (2): 76. |
17 |
PEREZ DE VARGAS-SANSALVADOR I M , ERENAS M M , MARTíNEZ-OLMOS A , et al. Smartphone based meat freshness detection[J]. Talanta, 2020, 216, 120985.
doi: 10.1016/j.talanta.2020.120985 |
18 | COLLINS L M , SMITH L M . Review: smart agri-systems for the pig industry[J]. Animal, 2022, 16 (S2): 100518. |
19 | PANERU S , JEELANI I . Computer vision applications in construction: current state, opportunities & challenges[J]. Autom Constr, 2021, 132 (1): 103940. |
20 | KAKANI V , NGUYEN V H , KUMAR B P , et al. A critical review on computer vision and artificial intelligence in food industry[J]. J Agric Food Res, 2020, 2, 100033. |
21 |
HE H J , WU D , SUN D W . Nondestructive spectroscopic and imaging techniques for quality evaluation and assessment of fish and fish products[J]. Crit Rev Food Sci Nutr, 2015, 55 (6): 864- 886.
doi: 10.1080/10408398.2012.746638 |
22 |
WEINSTEIN B G . A computer vision for animal ecology[J]. J Anim Ecol, 2018, 87 (3): 533- 545.
doi: 10.1111/1365-2656.12780 |
23 |
BLEHM C , VISHNU S , KHATTAK A , et al. Computer vision syndrome: a review[J]. Surv Ophthalmol, 2005, 50 (3): 253- 262.
doi: 10.1016/j.survophthal.2005.02.008 |
24 |
D'ANTONI F , RUSSO F , AMBROSIO L , et al. Artificial intelligence and computer vision in low back pain: a systematic review[J]. Int J Environ Res Public Health, 2021, 18 (20): 10909.
doi: 10.3390/ijerph182010909 |
25 |
TIAN J . Computer vision and machine learning for intelligent sensing systems[J]. Sensors (Basel), 2023, 23 (9): 4214.
doi: 10.3390/s23094214 |
26 |
CHEN D , WU P X , WANG K , et al. Combining computer vision score and conventional meat quality traits to estimate the intramuscular fat content using machine learning in pigs[J]. Meat Sci, 2022, 185, 108727.
doi: 10.1016/j.meatsci.2021.108727 |
27 |
WAIMIN J , GOPALAKRISHNAN S , HEREDIA-RIVERA U , et al. Low-cost nonreversible electronic-free wireless pH sensor for spoilage detection in packaged meat products[J]. ACS Appl Mater Interfaces, 2022, 14 (40): 45752- 45764.
doi: 10.1021/acsami.2c09265 |
28 |
ISTIF E , MIRZAJANI H , DAĞ Ç , et al. Miniaturized wireless sensor enables real-time monitoring of food spoilage[J]. Nat Food, 2023, 4 (5): 427- 436.
doi: 10.1038/s43016-023-00750-9 |
29 |
NIE W G , CHEN Y F , ZHANG H , et al. A novel colorimetric sensor array for real-time and on-site monitoring of meat freshness[J]. Anal Bioanal Chem, 2022, 414 (20): 6017- 6027.
doi: 10.1007/s00216-022-04176-3 |
30 |
DUAN X Y , LI Z R , WANG L , et al. Engineered nanomaterials-based sensing systems for assessing the freshness of meat and aquatic products: a state-of-the-art review[J]. Comp Rev Food Sci Food Safe, 2023, 22 (1): 430- 450.
doi: 10.1111/1541-4337.13074 |
31 |
ZHOU L , ZHANG C , LIU F , et al. Application of deep learning in food: a review[J]. Comp Rev Food Sci Food Safe, 2019, 18 (6): 1793- 1811.
doi: 10.1111/1541-4337.12492 |
32 |
MA J , SUN D W , QU J H , et al. Applications of computer vision for assessing quality of Agri-food products: a review of recent research advances[J]. Crit Rev Food Sci Nutr, 2016, 56 (1): 113- 127.
doi: 10.1080/10408398.2013.873885 |
33 | HUANG L , ZHAO J W , CHEN Q S , et al. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques[J]. Food Chem, 2014, 145 (1): 228- 236. |
34 |
LIU J H , SUN X , YOUNG J M , et al. Predicting pork loin intramuscular fat using computer vision system[J]. Meat Sci, 2018, 143, 18- 23.
doi: 10.1016/j.meatsci.2018.03.020 |
35 |
LIN L L , GUO J X , LIU L C . Multi-scene application of intelligent inspection robot based on computer vision in power plant[J]. Sci Rep, 2024, 14 (1): 10657.
doi: 10.1038/s41598-024-56795-8 |
36 |
ZHANG J J , HUANG H X , SONG G C , et al. Intelligent biosensing strategies for rapid detection in food safety: a review[J]. Biosens Bioelectron, 2022, 202, 114003.
doi: 10.1016/j.bios.2022.114003 |
37 |
GUO L L , WANG T , WU Z H , et al. Portable food-freshness prediction platform based on colorimetric barcode combinatorics and deep convolutional neural networks[J]. Adv Mater, 2020, 32 (45): 2004805.
doi: 10.1002/adma.202004805 |
38 |
AHETO J H , HUANG X Y , TIAN X Y , et al. Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat[J]. Anal Bioanal Chem, 2020, 412 (5): 1169- 1179.
doi: 10.1007/s00216-019-02345-5 |
39 |
OPPEN D , ATTIG T , WEISS J , et al. Anticipating food structure of meat products from mastication physics applying machine learning[J]. Food Res Int, 2023, 174, 113576.
doi: 10.1016/j.foodres.2023.113576 |
40 |
HUANG C Q , GU Y . A machine learning method for the quantitative detection of adulterated meat using a MOS-based E-nose[J]. Foods, 2022, 11 (4): 602.
doi: 10.3390/foods11040602 |
41 |
LIM H R , KHOO K S , CHIA W Y , et al. Smart microalgae farming with internet-of-things for sustainable agriculture[J]. Biotechnol Adv, 2022, 57, 107931.
doi: 10.1016/j.biotechadv.2022.107931 |
[1] | Jingjing TIAN, Xiaoqing WANG, Mianyan LI, Hailing WANG, Qitian WU, Lixian WANG, Longchao ZHANG, Fuping ZHAO. Analysis of the Whole Genome Run of Homozygosity (ROH) and Selection Signal in Beijing Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3833-3842. |
[2] | Baigao YANG, Xi LONG, Liang ZHANG, Jiehuan XU, Jianjun DAI, Xueming ZHAO, Hongmei PAN. Exploring the Effect of Vitrification on Gene Expression in Porcine Parthenogenetic Blastocysts by Smart-seq2 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3936-3946. |
[3] | REN Cong, ZHANG Hu, WANG Yuming, XIE Jingjing, SA Renna, ZHAO Feng. Study on the Accuracy and Additivity of Effective Energy in Feed for Growing Pigs Predicted by Simulated Digestion Method [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3988-4000. |
[4] | ZHANG Shan, LIU Dahu, LIU Baojing, LIANG Lin, LIANG Ruiying, TANG Xinming, QIU Xusheng, DING Chan, DING Jiabo, HOU Shaohua. Isolation,Identification and Pathogenicity Analysis of a Pigeon Paramyxovirus-1 Strain [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4051-4060. |
[5] | Xiaojuan LIANG, Yushuang LI, Zhou FU, Duo TANG, Yingying LI, Shouwei WANG. Isolation, Culture and Adipogenic Differentiation of Pigeon Preadipocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3482-3492. |
[6] | Jing CHEN, Xuebei WU, Dongzhi MIAO, Chi ZHANG, Zhenyu GUO, Ying WANG. Comparative Analysis of Transcriptome of Pigeon Follicles at Early Stage of Laying Interval Reveals Genes Related to Follicular Development [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3503-3515. |
[7] | Yue LI, Changchun ZHANG, Guangyu LIU, Mengyuan GAO, Chaojun FU, Jiabao XING, Sijia XU, Qiyuan KUANG, Jing LIU, Xiaopeng GAO, Heng WANG, Lang GONG, Guihong ZHANG, Yankuo SUN. Application and Analysis of Meta-transcriptomics Sequencing Technology in the Diagnosis of Viral Diarrhea Diseases in Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3579-3589. |
[8] | Tengfei DOU, Jiahao WU, Ziyi WU, Liyao BAI, Xinjian LI, Xuelei HAN, Ruimin QIAO, Kejun WANG, Feng YANG, Yining WANG, Xiuling LI. Application Progress of Genomic Selection and Mating Allocation Techniques in Pig Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2795-2808. |
[9] | Xiaojuan LIANG, Yushuang LI, Yingying LI, Shouwei WANG. Isolation, Culture and Adipogenic Differentiation of Beijing Black Pig Preadipocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2877-2889. |
[10] | Weizhe LIU, Chenggang LUO, Rong YUAN, Yijie LIAO, Yimin WEN, Ying SUN, Enbo YU, Sanjie CAO, Xiaobo HUANG. Isolation and Identification of a Highly Pathogenic Strain of Porcine Epidemic Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3049-3063. |
[11] | Yingguang LÜ, Guangming JIAO, Jinfang SANG, Zhipeng KOU, Tao LIU, Yue WANG, Xiangyu LU, Chenxi PIAO, Yajun MA, Jiantao ZHANG, Hongbin WANG. The Effect of Adipose Mesenchymal Stem Cells on the Healing Process of Autologous Skin Transplantation in Bama Miniature Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3193-3204. |
[12] | Bin LIU, Yan LIU, Chen ZHENG, Tao FENG. Effects of Glucosamine on Growth Performance, Antioxidant Capacity, and Immune Function in Weaned Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3246-3254. |
[13] | Tiantian YAN, Jianliang WU, Zhaojun WANG, Li XU, Qingli MENG, Meiyu SU, Hanqiao LI, Guoying HUANG, Chao WANG, Jiaqi LIN. Genetic Parameter Estimation and Genetic Progress Analysis of Reproductive Traits in French Large White Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2388-2396. |
[14] | Xiaoyi FENG, Peipei ZHANG, Hang ZHANG, Haisheng HAO, Weihua DU, Huabin ZHU, Kai CUI, Xueming ZHAO. Effects of Heat Stress on Epigenetic Modifications and Developmental Competence of Bovine Oocytes and Their Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2460-2473. |
[15] | Qilu ZHOU, Jinsong LIU, Chao WU, Caimei YANG, Yulan LIU, Ruiqiang ZHANG. Effects of Tannic Acid on Liver Tissue Function, Antioxidant Ability and Inflammatory Response in Lipopolysaccharide Stressed Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2519-2529. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||