[1] WOO P C Y, LAU S K P, LAM C S F, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus[J]. J Virol, 2012, 86(7):3995-4008. [2] KOCHERHANS R, BRIDGEN A, ACKERMANN M, et al. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence[J]. Virus Genes, 2001, 23(2):137-144. [3] JANTRAPHAKORN Y, VIRIYAKITKOSOL R, JONGKAEWWATTANA A, et al. Interaction between PEDV and its hosts:a closer look at the ORF3 accessory protein[J]. Front Vet Sci, 2021, 8:744276. [4] PARK S J, SONG D S, HA G W, et al. Cloning and further sequence analysis of the spike gene of attenuated porcine epidemic diarrhea virus DR13[J]. Virus Genes, 2007, 35(1):55-64. [5] KIM Y K, LIM S I, CHO I S, et al. A novel diagnostic approach to detecting porcine epidemic diarrhea virus:The lateral immunochromatography assay[J]. J Virol Methods, 2015, 225:4-8. [6] ZHUANG H, SUN L L, WANG X B, et al. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus strains circulating in China from 2020 to 2021[J]. BMC Vet Res, 2022, 18(1):392. [7] LEE C. Porcine epidemic diarrhea virus:An emerging and re-emerging epizootic swine virus[J]. Virol J, 2015, 12:193. [8] MéLADE J, PIORKOWSKI G, TOURET F, et al. A simple reverse genetics method to generate recombinant coronaviruses[J]. EMBO Rep, 2022, 23(5):e53820. [9] CHEN H Y, LIU H Q, PENG X Z. Reverse genetics in virology:A double edged sword[J]. Biosaf Health, 2022, 4(5):303-313. [10] OH J, LEE K W, CHOI H W, et al. Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein[J]. Arch Virol, 2014, 159(11):2977-2987. [11] CHANG C Y, HSU W T, CHAO Y C, et al. Display of porcine epidemic diarrhea virus spike protein on baculovirus to improve immunogenicity and protective efficacy[J]. Viruses, 2018, 10(7):346. [12] OH J S, SONG D S, YANG J S, et al. Comparison of an enzyme-linked immunosorbent assay with serum neutralization test for serodiagnosis of porcine epidemic diarrhea virus infection[J]. J Vet Sci, 2005, 6(4):349-352. [13] GERBER P F, GONG Q L, HUANG Y W, et al. Detection of antibodies against porcine epidemic diarrhea virus in serum and colostrum by indirect ELISA[J]. Vet J, 2014, 202(1):33-36. [14] LEE H K, LEE B H, SEOK S H, et al. Development and comparison of enzyme-linked immunosorbent assay using recombinant truncated nucleocapsid proteins for detection of antibodies against SARS-corona virus[Z]. International Conference on Future Computer & Communication. 2007. [15] PAUDEL S, PARK J E, JANG H, et al. Comparison of serum neutralization and enzyme-linked immunosorbent assay on sera from porcine epidemic diarrhea virus vaccinated pigs[J]. Vet Quart, 2014, 34(4):218-223. [16] OKDA F, LIU X D, SINGREY A, et al. Development of an indirect ELISA, blocking ELISA, fluorescent microsphere immunoassay and fluorescent focus neutralization assay for serologic evaluation of exposure to North American strains of porcine epidemic diarrhea virus[J]. BMC Vet Res, 2015, 11:180. [17] LV C C, XIAO Y, LI X D, et al. Porcine epidemic diarrhea virus:current insights[J]. Virus Adaptation and Treatment, 2016, 8:1-12. [18] LI C H, LI Z, ZOU Y, et al. Manipulation of the porcine epidemic diarrhea virus genome using targeted RNA recombination[J]. PLoS One, 2013, 8(8):e69997. [19] MA M X, WANG S Q, ZHOU T Z, et al. Research progress in reverse genetic manipulation techniques for animal RNA viruses[J]. Journal of Liaoning Medical University, 2008, 29(3):281-284. (in Chinese) 马鸣潇, 王书全, 周铁忠, 等. 动物RNA病毒反向遗传学操作技术研究进展[J]. 辽宁医学院学报, 2008, 29(3):281-284. [20] PIERSON T C, DIAMOND M S, AHMED A A, et al. An infectious West Nile virus that expresses a GFP reporter gene[J]. Virology, 2005, 334(1):28-40. [21] ZHANG H L, DONG H L, ZHANG Y N, et al. Visualization of chikungunya virus infection in vitro and in vivo[J]. Emerg Microbes Infect, 2019, 8(1):1574-1583. [22] TEERAVECHYAN S, FRANTZ P N, WONGTHIDA P, et al. Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics[J]. Virus Res, 2016, 226:152-171. [23] TANIGUCHI T, PALMIERI M, WEISSMANN C. A Qbeta DNA-containing hybrid plasmid giving rise to Qbeta phage formation in the bacterial host[proceedings] [J]. Ann Microbiol (Paris), 1978, 129 B(4):535-536. [24] RACANIELLO V R, BALTIMORE D. Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome[J]. Proc Natl Acad Sci U S A, 1981, 78(8):4887-4891. [25] LIU C, TANG J, MA Y M, et al. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus[J]. J Virol, 2015, 89(11):6121-6125. [26] JIAO S Y, LIN C, DU L Y, et al. Porcine deltacoronavirus induces mitochondrial apoptosis in ST cells[J]. Chinese Journal of Biotechnology, 2019, 35(6):1050-1058. 焦少勇, 林翠, 杜柳阳, 等. 猪丁型冠状病毒诱导的细胞线粒体凋亡[J]. 生物工程学报, 2019, 35(6):1050-1058. [27] OH J S, SONG D S, PARK B K. Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhea virus in porcine enterocytes[J]. J Vet Sci, 2003, 4(3):269-275. [28] LIU J E, XU Y P, LI K, et al. The m6A methylome of SARS-CoV-2 in host cells[J]. Cell Res, 2021, 31(4):404-414. [29] ZHAO M M, ZHU Y, ZHANG L, et al. Novel cleavage sites identified in SARS-CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies[J]. Cell Discov, 2022, 8(1):53. [30] ZHU Y K, FENG F, HU G W, et al. A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry[J]. Nat Commun, 2021, 12(1):961. [31] CHU H, HU B J, HUANG X E, et al. Host and viral determinants for efficient SARS-CoV-2 infection of the human lung[J]. Nat Commun, 2021, 12(1):134. [32] CHEN N H, LI S J, ZHOU R Y, et al. Two novel porcine epidemic diarrhea virus (PEDV) recombinants from a natural recombinant and distinct subtypes of PEDV variants[J]. Virus Res, 2017, 242:90-95. |