Acta Veterinaria et Zootechnica Sinica ›› 2021, Vol. 52 ›› Issue (11): 3294-3303.doi: 10.11843/j.issn.0366-6964.2021.011.030
• RESEARCH NOTES • Previous Articles Next Articles
MI Bunong1, ZHANG Liguo2, BAI Urhan1, GUO Yulin1, WANG Chunwei1, XU Quanzhong1, FENG Shuang1, LI Guangpeng1, SU Xiaohu1*, ZHANG Li1*
Received:
2021-03-29
Online:
2021-11-23
Published:
2021-11-24
CLC Number:
MI Bunong, ZHANG Liguo, BAI Urhan, GUO Yulin, WANG Chunwei, XU Quanzhong, FENG Shuang, LI Guangpeng, SU Xiaohu, ZHANG Li. Genome-wide Association Study of Milk Production Traits in Dairy Meade Sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(11): 3294-3303.
[1] | 郑重, 张功, 任志强, 等. 我国奶绵羊产业现状与发展方向[J].中国乳业, 2019(8):27-31.ZHENG Z, ZHANG G, REN Z Q, et al. Current situation and development direction of dairy and sheep industry in China[J].China Dairy, 2019(8):27-31.(in Chinese) |
[2] | KING M E, KING J E, POWELL C B.Sheep dairying in New Zealand-the Kingsmeade story[J].Proc N Z Soc Anim Prod, 2014, 74:58-61. |
[3] | 赵志达, 张莉.基因组选择在绵羊育种中的应用[J].遗传, 2019, 41(4):293-303.ZHAO Z D, ZHANG L.Applications of genome selection in sheep breeding[J].Hereditas, 2019, 41(4):293-303.(in Chinese) |
[4] | 张统雨, 朱才业, 杜立新, 等. 羊重要性状全基因组关联分析研究进展[J].遗传, 2017, 39(6):491-500.ZHANG T Y, ZHU C Y, DU L X, et al. Advances in genome-wide association studies for important traits in sheep and goats[J].Hereditas, 2017, 39(6):491-500.(in Chinese) |
[5] | 齐超, 谢岩, 吴晓平, 等. 基于全基因组信息鉴定中国荷斯坦牛产奶性状基因及功能注释[J].畜牧兽医学报, 2012, 43(6):872-877.QI C, XIE Y, WU X P, et al. Identification and annotation of genes affecting milk production traits in Chinese Holstein based on GWAS[J].Acta Veterinaria et Zootechnica Sinica, 2012, 43(6):872-877.(in Chinese) |
[6] | LIU J J, LIANG A X, CAMPANILE G, et al. Genome-wide association studies to identify quantitative trait loci affecting milk production traits in water buffalo[J].J Dairy Sci, 2018, 101(1):433-444. |
[7] | DENG T X, LIANG A X, LIANG S S, et al. Integrative analysis of transcriptome and GWAS data to identify the hub genes associated with milk yield trait in buffalo[J].Front Genet, 2019, 10:36. |
[8] | SILVA A A, SILVA D A, SILVA F F, et al. GWAS and gene networks for milk-related traits from test-day multiple lactations in Portuguese Holstein cattle[J].J Appl Gene, 2020, 61(3):465-476. |
[9] | ABDEL-SHAFY H, AWAD M A A, EL-REGALATY H, et al. Prospecting genomic regions associated with milk production traits in Egyptian buffalo[J].J Dairy Res, 2020, 87(4):389-396. |
[10] | GARCÍA-GÁMEZ E, GUTIÉRREZ-GIL B, SAHANA G, et al. GWA analysis for milk production traits in dairy sheep and genetic support for a QTN influencing milk protein percentage in the LALBA gene[J].PLoS One, 2012, 7(10):e47782. |
[11] | MOIOLI B, SCATÈ M C, STERI R, et al. Signatures of selection identify loci associated with milk yield in sheep[J].BMC Genet, 2013, 14(1):76. |
[12] | LI H, WU X L, TAIT R G JR, et al. Genome-wide association study of milk production traits in a crossbred dairy sheep population using three statistical models[J].Anim Genet, 2020, 51(4):624-628. |
[13] | SUTERA A M, RIGGIO V, MASTRANGELO S, et al. Genome-wide association studies for milk production traits in Valle del Belice sheep using repeated measures[J].Anim Genet, 2019, 50(3):311-314. |
[14] | LI H, DURBIN R.Fast and accurate short read alignment with Burrows-Wheeler transform[J].Bioinformatics, 2009, 25(14):1754-1760. |
[15] | MCKENNA A, HANNA M, BANKS E, et al. The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data[J].Genome Res, 2010, 20(9):1297-1303. |
[16] | MAREES A T, DE KLUIVER H, STRINGER S, et al. A tutorial on conducting genome-wide association studies:quality control and statistical analysis[J].Int J Methods Psychiatr Res, 2018, 27(2):e1608. |
[17] | 郝兴杰, 胡林, 张淑君.全基因组关联分析方法的研究进展[J].畜牧兽医学报, 2016, 47(2):213-217.HAO X J, HU L, ZHANG S J.Progresses in research of genome-wide association study methods[J].Acta Veterinaria et Zootechnica Sinica, 2016, 47(2):213-217.(in Chinese) |
[18] | ZHOU X, STEPHENS M.Genome-wide efficient mixed-model analysis for association studies[J].Nat Genet, 2012, 44(7):821-824. |
[19] | YU J M, PRESSOIR G, BRIGGS W H, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nat Genet, 2006, 38(2):203-208. |
[20] | WANG K, LI M Y, HAKONARSON H.ANNOVAR:functional annotation of genetic variants from high-throughput sequencing data[J].Nucleic Acids Res, 2010, 38(16):e164. |
[21] | YU G C, WANG L G, HAN Y Y, et al. ClusterProfiler:an R package for comparing biological themes among gene clusters[J].OMICS:J Integr Biol, 2012, 16(5):284-287. |
[22] | GEBRESELASSIE G, BERIHULAY H, JIANG L, et al. Review on genomic regions and candidate genes associated with economically important production and reproduction traits in sheep (Ovies aries)[J].Animals, 2020, 10(1):33. |
[23] | ZHAO X F, QIN W H, JIANG Y H, et al. ACADL plays a tumor-suppressor role by targeting Hippo/YAP signaling in hepatocellular carcinoma[J].npj Precis Oncol, 2020, 4:7. |
[24] | ZHANG M H, SUNABA T, SUN Y T, et al. Acyl-CoA dehydrogenase long chain (ACADL) is a target protein of stylissatin A, an anti-inflammatory cyclic heptapeptide[J].J Antibiot, 2020, 73(8):589-592. |
[25] | 张少卿, 刘贤惠, 张成龙, 等. 整个泌乳周期牛乳脂肪酸变化与乳腺乳脂合成代谢的关联分析[J].中国奶牛, 2016(12):12-17.ZHANG S Q, LIU X H, ZHANG C L, et al. Correlation analysis between milk fatty acids change in a whole lactation period and breast milk fat synthesis metabolism[J].China Dairy Cattle, 2016(12):12-17.(in Chinese) |
[26] | 杨沛方, 陈伟, 覃海, 等. 猪MYL1和MYL2基因的mRNA在不同组织中的表达分析[J].基因组学与应用生物学, 2020, 39(7):2989-2994.YANG P F, CHEN W, QIN H, et al. Expression analysis of MYL1 and MYL2 genes in different tissues of large white pig[J].Genomics and Applied Biology, 2020, 39(7):2989-2994.(in Chinese) |
[27] | LUTZ T, STÖGER R, NIETO A.CHD6 is a DNA-dependent ATPase and localizes at nuclear sites of mRNA synthesis[J].FEBS Lett, 2006, 580(25):5851-5857. |
[28] | 张雪莹.奶山羊过氧化物酶增殖物激活受体γ(PPARγ)基因启动子转录调控机理研究[D].杨凌:西北农林科技大学, 2018.ZHANG X Y.Transcriptional regulatory mechanisms of PPARγ gene promoter of dairy goat[D].Yangling:Northwest A&F University, 2018.(in Chinese) |
[29] | BIONAZ M, LOOR J J.ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation[J].J Nutr, 2008, 138(6):1019-1024. |
[30] | IBEAGHA-AWEMU E M, PETERS S O, AKWANJI K A, et al. High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits[J].Sci Rep, 2016, 6:31109. |
[31] | LIU L Y, ZHOU J H, CHEN C J, et al. GWAS-based identification of new loci for milk yield, fat, and protein in Holstein cattle[J].Animals, 2020, 10(11):2048. |
[32] | BEDFORD M T, CLARKE S G.Protein arginine methylation in mammals:who, what, and why[J].Mol Cell, 2009, 33(1):1-13. |
[33] | BLACKWELL E, CEMAN S.Arginine methylation of RNA-binding proteins regulates cell function and differentiation[J].Mol Reprod Dev, 2012, 79(3):163-175. |
[34] | CHEN C, NOTT T J, JIN J, et al. Deciphering arginine methylation:tudor tells the tale[J].Nat Rev Mol Cell Biol, 2011, 12(10):629-642. |
[35] | LEE Y H, STALLCUP M R.Minireview:protein arginine methylation of nonhistone proteins in transcriptional regulation[J].Mol Endocrinol, 2009, 23(4):425-433. |
[36] | MOWEN K A, SCHURTER B T, FATHMAN J W, et al. Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes[J]. Mol Cell, 2004, 15(4):559-571. |
[37] | CHAN L H, ZHOU L, NG K Y, et al. PRMT6 regulates RAS/RAF binding and MEK/ERK-mediated cancer stemness activities in hepatocellular carcinoma through CRAF methylation[J].Cell Rep, 2018, 25(3):690-701.e8. |
[38] | 罗举.蛋白质精氨酸甲基转移酶与相关疾病[J].国际病理科学与临床杂志, 2011, 31(5):404-409.LUO J.Protein arginine methyltransferase and the related diseases[J].International Journal of Pathology and Clinical Medicine, 2011, 35(5):404-409.(in Chinese) |
[39] | WU Z Z, LIU H F, SUN W L, et al. RNF180 mediates STAT3 activity by regulating the expression of RhoC via the proteasomal pathway in gastric cancer cells[J].Cell Death Dis, 2020, 11(10):881. |
[40] | LIU L, ZHANG Q.Identification and functional analysis of candidate gene VPS28 for milk fat in bovine mammary epithelial cells[J].Biochem Biophys Res Commun, 2019, 510(4):606-613. |
[1] | SU Wennan, LIU Jiaqi, ZHONG Jiacheng, CHEN Jidang, ZHU Wanjun, ZHANG Yishan, ZHANG Jipei. Complete Genome Re-sequence and Comparative Genomic Analysis of Avibacterium paragallinarum from Geese [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1208-1216. |
[2] | ZHONG Xin, ZHANG Hui, ZHANG Chong, LIU Xiaohong. Research Progress on Genetic Breeding of Reproductive Performance in Sows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 438-450. |
[3] | REN Yuwei, CHEN Xing, LIN Yanning, HUANG Xiaoxian, HONG Lingling, WANG Feng, SUN Ruiping, ZHANG Yan, LIU Hailong, ZHENG Xinli, CHAO Zhe. Investigating the Influencing Factors of Egg Laying Performance in Wenchang Chickens Based on Whole Genome Resequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 502-514. |
[4] | TANG Xinxin, ZHENG Jumei, LUO Na, YING Fan, ZHU Dan, LI Sen, LIU Dawei, AN Bingxing, WEN Jie, ZHAO Guiping, LI Hegang. Genetic Mechanism of Broiler Leg Disease Based on Genome-Wide Association Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 99-109. |
[5] | LIN Yan, HUANG Min, LI Xiujin, ZHANG Xumeng, HUANG Yunmao, TIAN Yunbo, WU Zhongping. Uncovering Genome-wide Copy Number Variations in 8 Duck Breeds Using Whole Genome Resequencing Data [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3700-3709. |
[6] | LU Chang, DONG Lei, ZHANG Wanfeng, GAO Pengfei, GUO Xiaohong, CAI Chunbo, CAO Guoqing, LI Bugao. Identification and Screening of Single Nucleotide Polymorphism Loci in Jinfen White Pigs Based on Whole Genome Resequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2761-2771. |
[7] | YANG Qing, GONG Jing, ZHAO Xueyan, ZHU Xiaodong, GENG Liying, ZHANG Chuansheng, WANG Jiying. Comparison of Array and Resequencing in Pig Genetic Structure Studies [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2772-2782. |
[8] | WANG Zhenyu, ZHANG Saibo, LIU Wenhui, LIANG Dong, REN Xiaoli, YAN Lei, YAN Yuefei, GAO Tengyun, ZHANG Zhen, HUANG Hetian. Genomic Inbreeding Coefficient Analysis and Functional Gene Screening in Different Dairy Farms Based on SNP Chip Data [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2848-2857. |
[9] | ZHANG Xiaoke, LIAO Weili, CHEN Xinyou, LI Tingting, YUAN Xiaolong, LI Jiaqi, HUANG Xiang, ZHANG Hao. Genome-wide Association Study for Identifying Candidate Genes of Growth Traits in Duroc Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1868-1876. |
[10] | ZHANG Changzheng, LI Desen, HUANG Min, FANG Xiaomin, ZHAO Weimin, REN Shouwen, DONG Huansheng, REN Jun, ZHOU Lisheng. An Imputed Whole-genome Sequence-based GWAS Approach Pinpoints Genetic Loci for Body Conformation at Birth and Teat Number Traits in Sushan Pig Population [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 88-102. |
[11] | MA Lixia, CAO Guowei, ZHU Hongfang, DENG Zhanzhao, CAI Zhengyun, ZHOU Chenghao, HAN Wei, GU Yaling, ZHANG Juan. Analysis of Genetic Variation in a Conserved Population of Jingyuan Chickens Based on RAD-seq [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2104-2117. |
[12] | TAO Wei, HOU Liming, WANG Binbin, LIU Hang, LI Kaijun, YIN Yanzhen, GUO Hao, NIU Peipei, ZHANG Zongping, LI Qiang, HUANG Ruihua, LI Pinghua. Identification of Candidate Genes Affecting Drip Loss in Pork by Genome-wide Selection Signal Method [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1373-1383. |
[13] | LU Yujie, MO Jiayuan, QI Wenjing, ZHU Siran, YANG Lili, LIU Qiaoling, BU Yage, LAN Ganqiu, LIANG Jing. Population Genetic Structure and Selection Signatures Associated with Litter Size Trait in Several Chinese Indigenous Pig Breeds [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 360-369. |
[14] | WANG Hailong, WANG Qiao, XING Siyuan, WANG Jie, LI Qinghe, ZHENG Maiqing, CUI Huanxian, LIU Ranran, ZHAO Guiping, WEN Jie. Evaluating Beijing You Chickens Conservation Status by Phenotype and Genome Information [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2406-2415. |
[15] | WANG Huifang, ZHOU Guangxian, SUN Yongfeng, CHEN Xinqi, LEI Xubin, ZHANG Ruiyi, JIA Rumin, ZHAO Zhihui. Analysis of Indel Markers of Shitou Goose Based on Whole Genome Resequencing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 662-675. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||