

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (11): 5888-5900.doi: 10.11843/j.issn.0366-6964.2025.11.044
豆婉婉1(
), 崔燕1,2, 张倩1, 牛悦悦1, 何俊峰1,*(
)
收稿日期:2024-11-07
出版日期:2025-11-23
发布日期:2025-11-27
通讯作者:
何俊峰
E-mail:1978537683@qq.com;hejf@gsau.edu.cn;hejf@gsau.edu.cn
作者简介:豆婉婉(2000-),女,甘肃兰州人,硕士生,主要从事动物组织学与胚胎学研究,E-mail:1978537683@qq.com
基金资助:
DOU Wanwan1(
), CUI Yan1,2, ZHANG Qian1, NIU Yueyue1, HE Junfeng1,*(
)
Received:2024-11-07
Online:2025-11-23
Published:2025-11-27
Contact:
HE Junfeng
E-mail:1978537683@qq.com;hejf@gsau.edu.cn;hejf@gsau.edu.cn
摘要:
肺神经内分泌细胞(PNEC)位于气道上皮层内,可分泌活性胺和肽类物质,兼有神经细胞及内分泌细胞的特征,与陆生哺乳动物肺脏发育和适应外界环境功能密切相关。为探究PNEC在不同年龄牦牛肺脏中的分布和低氧适应性结构形成过程中的可能作用,本研究选取初生(1~6日龄)、幼年(1~3岁)、成年(4~6岁)及老年(7~10岁)牦牛各6头,利用Grimelius嗜银染色、免疫组织化学染色、免疫荧光染色对PNEC及其相关因子嗜铬粒蛋白A(CGA)、S100蛋白(S100 A1)、神经元特异性烯醇化酶(NSE)和神经源性分化因子(NEUROD1)的分布特征进行研究,同时采用Western blot和qRT-PCR检测这些相关因子在蛋白水平的表达及基因水平的转录。结果显示,牦牛肺脏气道上皮中PNEC数量以初生组最多;PNEC相关因子主要分布于气道上皮细胞、Ⅱ型肺泡上皮细胞、肺动脉内皮细胞及气管腺腺上皮细胞;CGA、S100A1和NEUROD1的表达趋势基本一致,均在初生组牦牛肺脏中表达最高,之后呈递减趋势,蛋白水平上的表达各组差异均显著(P < 0.05)。基因水平上的转录各组趋势虽然一致,但4种因子组间差异较大,NSE在成年组牦牛肺脏中表达最高,且显著高于初生组、幼年组、老年组牦牛,呈现先递增再递减的趋势。本研究表明PNEC及其相关因子通过动态表达调控可能参与了牦牛肺脏对低氧环境的适应性调节,同时为牦牛生存繁衍提供关键能量支持,也为进一步研究牦牛肺脏低氧适应机制提供了资料。
中图分类号:
豆婉婉, 崔燕, 张倩, 牛悦悦, 何俊峰. 牦牛肺脏气道肺神经内分泌细胞及其相关因子的分布和表达分析[J]. 畜牧兽医学报, 2025, 56(11): 5888-5900.
DOU Wanwan, CUI Yan, ZHANG Qian, NIU Yueyue, HE Junfeng. Study on the Distribution and Expression of Lung Neuroendocrine Cells and Their Related Factors in Yak Lung Airway[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5888-5900.
表 1
目的基因和内参基因引物序列"
| 基因名称 Gene name | GenBank登录号 GenBank accession number | 引物序列(5′→3′) Primer sequence | 片段长度/bp Fragment size |
| NSE | XM_005907488.1 | F: GGTCCAAGTTCACAGCCAATG R: ACCTTCAGCAGCAGACAGTT | 121 |
| S100A1 | XM_014483048.1 | F: AGACTCTCATCAATGTGTTCCA R: CCTCTCCATCTCCGTTCTCA | 180 |
| CGA | XM_005902885.1 | F: CCAAGAACATCACCTCGGAAG R: GAGCAAGTCAGCCATCATCAG | 171 |
| NEUROD1 | XM_005905941.2 | F: GAGGAGCACGAGACAGACA R: CGCCTTCGTCATCTTCTTCTT | 189 |
| β-actin | XM_005887322.2 | F: CCGTGACATCAAGGAGAAG R: AGGAAGGAAGGCTGGAAG | 174 |
| 1 |
NOGUCHI M , FURUKAWA K T , MORIMOTO M . Pulmonary neuroendocrine cells: physiology, tissue homeostasis and disease[J]. Dis Model Mech, 2020, 13 (12): dmm046920.
doi: 10.1242/dmm.046920 |
| 2 |
CUTZ E , JACKSON A . Neuroepithelial bodies as airway oxygen sensors[J]. Respir Physiol, 1999, 115 (2): 201- 214.
doi: 10.1016/S0034-5687(99)00018-3 |
| 3 | GARG A , SUI P , VERHEYDEN J M , et al. Consider the lung as a sensory organ: A tip from pulmonary neuroendocrine cells[J]. Curr Top Dev Biol, 2019, 132, 67- 89. |
| 4 |
BREUER O , COHEN-CYMBERKNOH M , PICARD E , et al. The use of infant pulmonary function tests in the diagnosis of neuroendocrine cell hyperplasia of infancy[J]. Chest, 2021, 160 (4): 1397- 1405.
doi: 10.1016/j.chest.2021.05.032 |
| 5 |
HEWITT R J , LLOYD C M . Regulation of immune responses by the airway epithelial cell landscape[J]. Nat Rev Immunol, 2021, 21 (6): 347- 362.
doi: 10.1038/s41577-020-00477-9 |
| 6 | SOUNTOULIDIS A , MARCO S S , BRAUN E , et al. A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung[J]. Nat Cell Biol, 2023, 25 (2): 351- 365. |
| 7 | DONG Y , LI Y , LIU R , et al. Secretagogin, a marker for neuroendocrine cells, is more sensitive and specific in large cell neuroendocrine carcinoma compared with the markers CD56, CgA, Syn and Napsin A[J]. Oncol Lett, 2020, 19 (3): 2223- 2230. |
| 8 |
ZHENG C , ZHONG Y , ZHANG W , et al. Chlorogenic acid ameliorates post-infectious irritable bowel syndrome by regulating extracellular vesicles of gut microbes[J]. Adv Sci (Weinh), 2023, 10 (28): e2302798.
doi: 10.1002/advs.202302798 |
| 9 |
NGUYEN V , TAINE E G , MENG D , et al. Chlorogenic acid: A systematic review on the biological functions, mechanistic actions, and therapeutic potentials[J]. Nutrients, 2024, 16 (7): 924.
doi: 10.3390/nu16070924 |
| 10 |
LEŚNIAK W , GRACZYK-JARZYNK A . The S100 proteins in epidermis: Topology and function[J]. Biochim Biophys Acta, 2015, 1850 (12): 2563- 2572.
doi: 10.1016/j.bbagen.2015.09.015 |
| 11 |
XIA P , JI X , YAN L , et al. Roles of S100A8, S100A9 and S100A12 in infection, inflammation and immunity[J]. Immunology, 2024, 171 (3): 365- 376.
doi: 10.1111/imm.13722 |
| 12 |
BABKINA A S , LYUBOMUDROV M A , GOLUBEV M A , et al. Neuron-specific enolase-what are we measuring[J]. Int J Mol Sci, 2024, 25 (9): 5040.
doi: 10.3390/ijms25095040 |
| 13 |
MA Q , JIANG H , MA L , et al. The moonlighting function of glycolytic enzyme enolase-1 promotes choline phospholipid metabolism and tumor cell proliferation[J]. Proc Natl Acad Sci USA, 2023, 120 (15): e2209435120.
doi: 10.1073/pnas.2209435120 |
| 14 |
MA N , PULS B , CHEN G . Transcriptomic analyses of NeuroD1-mediated astrocyte-to-neuron conversion[J]. Dev Neurobiol, 2022, 82 (5): 375- 391.
doi: 10.1002/dneu.22882 |
| 15 |
BOHUSLAVOVA R , FABRICIOVA V , SMOLIK O , et al. NEUROD1 reinforces endocrine cell fate acquisition in pancreatic development[J]. Nat Commun, 2023, 14 (1): 5554.
doi: 10.1038/s41467-023-41306-6 |
| 16 | AYALEW W , CHU M , LIANG C , et al. Adaptation mechanisms of yak (Bos grunniens) to high-altitude environmental stress[J]. Animals (Basel), 2021, 11 (8): 2344. |
| 17 |
ZHENG Q , WU X , MA X , et al. Genetic structure analysis of yak breeds and their response to adaptive evolution[J]. Genomics, 2024, 116 (5): 110933.
doi: 10.1016/j.ygeno.2024.110933 |
| 18 |
LI J , HUANG N , ZHANG X , et al. Changes of collagen content in lung tissues of plateau yak and its mechanism of adaptation to hypoxia[J]. PeerJ, 2024, 12, e18250.
doi: 10.7717/peerj.18250 |
| 19 |
TROTTA R J , HARMON D L , KLOTZ J L . Serotonin receptor-mediated vasorelaxation occurs primarily through 5-HT4 activation in bovine lateral saphenous vein[J]. Physiol Rep, 2024, 12 (13): e16128.
doi: 10.14814/phy2.16128 |
| 20 |
CANDELI N , DAYTON T . Investigating pulmonary neuroendocrine cells in human respiratory diseases with airway models[J]. Dis Model Mech, 2024, 17 (5): dmm050620.
doi: 10.1242/dmm.050620 |
| 21 |
PRITCHARD D M . New mouse model suggests that some neuroendocrine tumors may originate from neural crest-derived cells[J]. Cell Mol Gastroenterol Hepatol, 2022, 14 (5): 1170- 1171.
doi: 10.1016/j.jcmgh.2022.08.005 |
| 22 |
ACOSTA S , DIZEYI N , PIERZYNOWSKI S , et al. Neuroendocrine cells and nerves in the prostate of the guinea pig: effects of peripheral denervation and castration[J]. Prostate, 2001, 46 (3): 191- 199.
doi: 10.1002/1097-0045(20010215)46:3<191::AID-PROS1023>3.0.CO;2-D |
| 23 |
KVINNSLAND I H , TADOKORO O , HEYERAAS K J , et al. Neuroendocrine cells in Malassez epithelium and gingiva of the cat[J]. Acta Odontol Scand, 2000, 58 (3): 107- 112.
doi: 10.1080/000163500429226 |
| 24 |
MOU H , YANG Y , RIEHS M A , et al. Airway basal stem cells generate distinct subpopulations of PNECs[J]. Cell Rep, 2021, 35 (3): 109011.
doi: 10.1016/j.celrep.2021.109011 |
| 25 |
TAYLOR W . Pulmonary argyrophil cells at high altitude[J]. J Pathol, 1977, 122 (3): 137- 144.
doi: 10.1002/path.1711220304 |
| 26 |
GOSNEY J R . Pulmonary neuroendocrine cells in species at high altitude[J]. Anat Rec, 1993, 236 (1): 105- 112.
doi: 10.1002/ar.1092360114 |
| 27 |
GOSNEY J R . Pulmonary endocrine cells in native Peruvian guinea-pigs at low and high altitude[J]. J Comp Pathol, 1990, 102 (1): 7- 12.
doi: 10.1016/S0021-9975(08)80002-3 |
| 28 |
THAKUR A , MEI S , ZHANG N , et al. Pulmonary neuroendocrine cells: crucial players in respiratory function and airway-nerve communication[J]. Front Neurosci, 2024, 18, 1438188.
doi: 10.3389/fnins.2024.1438188 |
| 29 |
KEITH I M , WILL J A . Hypoxia and the neonatal rabbit lung: neuroendocrine cell numbers, 5-HT fluorescence intensity, and the relationship to arterial thickness[J]. Thorax, 1981, 36 (10): 767- 773.
doi: 10.1136/thx.36.10.767 |
| 30 |
VAN LOMMEL A T , LAUWERYNS J M . Ultrastructure and innervation of neuroepithelial bodies in the lungs of newborn cats[J]. Anat Rec, 1993, 236 (1): 181- 190.
doi: 10.1002/ar.1092360122 |
| 31 |
BALAGUER L , ROMANO J . Solitary neuroendocrine cells and neuroepithelial bodies in the lower airways of embryonic, fetal, and postnatal sheep[J]. Anat Rec, 1991, 231 (3): 333- 338.
doi: 10.1002/ar.1092310306 |
| 32 |
LINGAMALLU S M , DESHPANDE A , JOY N , et al. Neuroepithelial bodies and terminal bronchioles are niches for distinctive club cells that repair the airways following acute notch inhibition[J]. Cell Rep, 2024, 43 (9): 114654.
doi: 10.1016/j.celrep.2024.114654 |
| 33 |
MCDONALD D M , BLEWETT R W . Location and size of carotid body-like organs (paraganglia) revealed in rats by the permeability of blood vessels to Evans blue dye[J]. J Neurocytol, 1981, 10 (4): 607- 643.
doi: 10.1007/BF01262593 |
| 34 | KIM T , GONDRÉ-LEWIS M C , ARNAOUTOVA I , et al. Dense-core secretory granule biogenesis[J]. Physiology (Bethesda), 2006, 21, 124- 133. |
| 35 |
KIM T , TAO-CHENG J H , EIDEN L E , et al. Large dense-core secretory granule biogenesis is under the control of chromogranin A in neuroendocrine cells[J]. Ann N Y Acad Sci, 2002, 971, 323- 331.
doi: 10.1111/j.1749-6632.2002.tb04487.x |
| 36 |
ZENG T , REN W , ZENG H , et al. TFAP2A activates S100A2 to mediate glutamine metabolism and promote lung adenocarcinoma metastasis[J]. Clin Respir J, 2024, 18 (8): e13825.
doi: 10.1111/crj.13825 |
| 37 |
GONZALEZ L L , GARRIE K , TURNER M D . Role of S100 proteins in health and disease[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867 (6): 118677.
doi: 10.1016/j.bbamcr.2020.118677 |
| 38 | ISGRÒ M A , BOTTONI P , SCATENA R . Neuron-specific enolase as a Biomarker: biochemical and clinical aspects[J]. Adv Exp Med Biol, 2015, 867, 125- 143. |
| 39 |
PIAST M , KUSTRZEBA-WÓJCICKA I , MATUSIEWICZ M , et al. Molecular evolution of enolase[J]. Acta Biochim Pol, 2005, 52 (2): 507- 513.
doi: 10.18388/abp.2005_3466 |
| 40 |
CHAN J M , QUINTANAL-VILLALONGA A , GAO V R , et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer[J]. Cancer Cell, 2021, 39 (11): 1479- 1496.
doi: 10.1016/j.ccell.2021.09.008 |
| 41 |
PAVLINKOVA G , SMOLIK O . NEUROD1: transcriptional and epigenetic regulator of human and mouse neuronal and endocrine cell lineage programs[J]. Front Cell Dev Biol, 2024, 12, 1435546.
doi: 10.3389/fcell.2024.1435546 |
| [1] | 袁越, 周建旭, 罗晓林, 官久强, 安添午, 赵洪文, 柏琴, 任子利, 张翔飞, 赵彦玲. 过瘤胃脂肪对育肥牦牛生产性能、血清生化及屠宰性能的影响[J]. 畜牧兽医学报, 2025, 56(8): 3849-3860. |
| [2] | 薛晓晓, 孟令宅, 王素艳, 于蒙蒙, 陈运通, 祁小乐, 李留安, 于晓雪, 高玉龙. B亚型禽偏肺病毒病弱毒疫苗对商品蛋鸡的免疫效果[J]. 畜牧兽医学报, 2025, 56(8): 3958-3966. |
| [3] | 白媛媛, 蔡雯祎, 邢嘉仪, 姜雨婷, 麻志伟, 吉文汇, 兰道亮. 牦牛、犏牛和黄牛肺脏比较转录组图谱研究[J]. 畜牧兽医学报, 2025, 56(7): 3226-3243. |
| [4] | 张虔, 马睿, 崔燕, 余四九. AMPK/SIRT1介导脂联素促进牦牛睾丸支持细胞乳酸转运的分子机制[J]. 畜牧兽医学报, 2025, 56(7): 3495-3506. |
| [5] | 韦钰诗, 孙文, 庞晓敏, 王玉莲. 产超广谱β内酰胺酶和碳青霉烯酶肺炎克雷伯菌替加环素耐药性机制的初步分析[J]. 畜牧兽医学报, 2025, 56(7): 3507-3518. |
| [6] | 赵恩浩, 石红梅, 格桑卓玛, 索朗斯珠, 贡嘎. 甘肃牦牛源肺炎克雷伯菌的遗传进化、毒力基因及耐药性分析[J]. 畜牧兽医学报, 2025, 56(6): 2893-2905. |
| [7] | 牛悦悦, 崔燕, 余四九, 何俊峰, 杨珊珊, 祁正满, 豆婉婉, 陈春燕, 邓演江. 不同年龄牦牛肺脏中JAK2、STAT3、P-JAK2/STAT3及PCNA蛋白的表达分析[J]. 畜牧兽医学报, 2025, 56(6): 2957-2967. |
| [8] | 王吉英, 向书涵, 李志强, 李炻漾, 张磊, 谢青云, 熊祺琰, 邵国青, 冯志新, 于岩飞. 大车前苷抑制猪肺炎支原体诱导的炎性反应的作用初探[J]. 畜牧兽医学报, 2025, 56(4): 1958-1968. |
| [9] | 邱谦, 桑锐, 王巍, 刘馨蔓, 于明弘, 刘晓童, 于天, 张雪梅. 呼宁散对鸡肺源大肠杆菌抑菌活性及体外抗炎、抗氧化作用研究[J]. 畜牧兽医学报, 2025, 56(4): 1969-1980. |
| [10] | 于泽坤, 姜承源, 袁洪兴, 周生, 段笑笑, 李彦, 宋勤叶. B亚型禽偏肺病毒B1分离株感染性克隆的构建与鉴定[J]. 畜牧兽医学报, 2025, 56(2): 788-802. |
| [11] | 李真亚, 刘洁, 李允, 王飞, 孔嫄嫄, 李泳, 贾荣玲. 猪肺炎支原体强弱毒株的生物学特性及比较基因组学分析[J]. 畜牧兽医学报, 2025, 56(2): 851-859. |
| [12] | 李家任, 郭亚男, 王建东, 邵喜成, 王学义, 何生虎. 宁夏地区牛支原体、溶血性曼氏杆菌、多杀性巴氏杆菌和肺炎克雷伯菌感染监测与分析[J]. 畜牧兽医学报, 2025, 56(11): 5721-5731. |
| [13] | 郑晓茹, 王一丹, 张丽红, 杨莹莹, 赵欣如, 李敏, 黄娟, 张乔亚, 曹志. 稳定表达猪瘟病毒NS3-NS4A和NS3pro-NS4A蛋白巨噬细胞系的构建及蛋白质组学分析[J]. 畜牧兽医学报, 2025, 56(11): 5839-5851. |
| [14] | 张泰铭, 李雅萱, 汪长寿, 胡格. 连翘脂苷A通过调控TLR3-NF-κB信号通路抑制H9N2亚型禽流感病毒复制[J]. 畜牧兽医学报, 2025, 56(10): 5266-5276. |
| [15] | 肖薇, 董嘉琪, 张晓松, 周轲, 魏彦明. 生脉散对热应激大鼠肺脏AMPK-mTOR通路及自噬的影响[J]. 畜牧兽医学报, 2025, 56(10): 5277-5288. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||