畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (7): 3226-3243.doi: 10.11843/j.issn.0366-6964.2025.07.017
白媛媛1(), 蔡雯祎1, 邢嘉仪1, 姜雨婷1, 麻志伟1, 吉文汇1,2,*(
), 兰道亮1,2,*(
)
收稿日期:
2024-10-28
出版日期:
2025-07-23
发布日期:
2025-07-25
通讯作者:
吉文汇,兰道亮
E-mail:2934245090@qq.com;somebody528@163.com;landaoliang@163.com
作者简介:
白媛媛(1998-),女,甘肃人,硕士,主要从事动物遗传育种研究,E-mail: 2934245090@qq.com
基金资助:
BAI Yuanyuan1(), CAI Wenyi1, XING Jiayi1, JIANG Yuting1, MA Zhiwei1, JI Wenhui1,2,*(
), LAN Daoliang1,2,*(
)
Received:
2024-10-28
Online:
2025-07-23
Published:
2025-07-25
Contact:
JI Wenhui, LAN Daoliang
E-mail:2934245090@qq.com;somebody528@163.com;landaoliang@163.com
摘要:
旨在通过比较牦牛、犏牛和黄牛的转录组数据,探究高原特有哺乳动物低氧适应相关的基因标记及适应机制。本研究采集平均体重330 kg,3~4岁健康雄性牦牛、雄性犏牛(海拔3 700 m)和平均体重350 kg雄性黄牛(海拔500 m)的肺脏组织,饲养方式均为放牧,每个品种设置3个重复样本。对采集的样本进行RNA提取及转录组测序,随后进行品种间的转录组差异比较、GO和KEGG分析及表达量趋势分析。结果,共获得3个品种372.98 G的CleanData。转录组差异比较发现,牦牛vs.黄牛显著差异基因有2 318个,犏牛vs.黄牛显著差异基因有1 487个,牦牛与犏牛共同区别于黄牛的显著差异基因有1 064个。它们主要涉及细胞外空间、免疫反应、离子跨膜运输、神经肽信号传递、趋化因子活性、造血细胞谱系等生物学过程,在神经活性配体-受体相互作用、CAMP信号通路、花生四烯酸代谢、酪氨酸代谢等通路显著富集。表达量趋势分析发现,1 064个DEGs中有275个基因的表达量在牦牛-犏牛-黄牛之间表现出递增或递减的规律,与膜相关的术语和细胞质、细胞核相关术语高频出现,涉及神经系统、免疫反应、细胞黏附等方面的通路有较为明确的功能推测。此外还发现了与缺氧适应有关的基因,它们包括IL1B、CHRNA7、ALAS2、HIF3A、CAMK2A等。不仅参与了对缺氧的响应,还广泛涉及免疫、神经、红细胞生成等多方面。本研究揭示了牦牛、犏牛和黄牛在基因表达上的显著差异,涉及免疫、缺氧适应、神经信号等关键通路,阐明了其独特生理特性及环境适应性。本研究结果为杂交优势和高原适应机制提供了分子依据,为高原动物遗传改良和疾病防控奠定了理论基础。
中图分类号:
白媛媛, 蔡雯祎, 邢嘉仪, 姜雨婷, 麻志伟, 吉文汇, 兰道亮. 牦牛、犏牛和黄牛肺脏比较转录组图谱研究[J]. 畜牧兽医学报, 2025, 56(7): 3226-3243.
BAI Yuanyuan, CAI Wenyi, XING Jiayi, JIANG Yuting, MA Zhiwei, JI Wenhui, LAN Daoliang. Comparative Transcriptome Mapping of the Lungs of Yak, Dzho, and Cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3226-3243.
表 1
数据库及版本信息"
数据库 Database | 网页链接 Web links | 版本信息 Version information |
mRNA数据库 mRNA database | ARS_UCD1.2_NCBI | |
KEGG数据库 KEGG database | NA | |
GO数据库GO database | NA | |
基因组数据库 Genome database | ARS_UCD1.2_NCBI | |
基因组注释文件 Genome annotation files | ARS_UCD1.2_NCBI |
表 2
用于实时荧光定量PCR的引物序列"
引物名称 Primer name | 引物序列(5′→3′) Primer sequence | 产物长度/bp Size |
GAPDH | F: AAGGTCGGAGTGAACGGATT;R: TTGATGACGAGCTTCCCGTT | 197 |
ALAS2 | R: TTGATGACGAGCTTCCCGTT;F: TACGTTCCTATGCTGCTGGC | 140 |
ALDH3A1 | F: CATCCTTACGGACGTGGACC;R: TCACCTTGTCGTTCGGTGAG | 164 |
SYT13 | F: GCACCCCAAGAAGGGAGTGT;R: GGACGGGCTCTGTGGACTT | 114 |
DEFB7 | F: CTCTTCCTGGTCCTGTCTG;R: GTGCCAATCTGTCTCCTGT | 146 |
CHRNA7 | F: TTGGGTCCTGGTCTTATGG;R: TCTGGGTAGGGTTCTTTGC | 160 |
1 | PATRICIAN A , ANHOLM J D , AINSLIE P N . A narrative review of periodic breathing during sleep at high altitude: From acclimatizing lowlanders to adapted highlanders[J]. J Physiol, 2024, 602 (21): 5435- 5448. |
2 | LI Y , FRANDSEN K M , GUO W , et al. Impact of altitude on the dosage of indoor particulates entering an individual 's small airways[J]. J Hazard Mater, 2024, 468, 133856. |
3 | BÄRTSCH P , GIBBS J S . Effect of altitude on the heart and the lungs[J]. Circulation, 2007, 116 (19): 2191- 2202. |
4 | CHU M , GAO H , ESPARZA P , et al. Chronic developmental hypoxia alters rat lung immune cell transcriptomes during allergic airway inflammation[J]. Physiol Rep, 2023, 11 (3): e15600. |
5 | LI H , PEI W , WANG Y , et al. Mechanism of action of the plateau-adapted gene PPARA in COPD[J]. Front Biosci (Landmark Ed), 2024, 29 (2): 68. |
6 | SHARMA S , KOSHY R , KUMAR R , et al. Hypobaric hypoxia drives selection of altitude-associated adaptative alleles in the Himalayan population[J]. Sci Total Environ, 2024, 913, 169605. |
7 | YAN F , WANG Y , WEI M , et al. Exploring the role of the CapG gene in hypoxia adaptation in Tibetan pigs[J]. Front Genet, 2024, 15, 1339683. |
8 | GE Q , GUO Y , ZHENG W , et al. Molecular mechanisms detected in yak lung tissue via transcriptome-wide analysis provide insights into adaptation to high altitudes[J]. Sci Rep, 2021, 11 (1): 7786. |
9 | 何俊峰, 贺延玉, 崔燕. 牦牛心脏肺脏对高海拔低氧的适应性结构[C]. 郑州: 中国畜牧兽医学会动物解剖及组织胚胎学分会第十九次学术研讨会, 2016: 15. |
HE J F, HE Y Y, CUI Y. Adaptive structure of yak heart and lungs to high altitude and low oxygen[C]. Zhengzhou: The 19th Academic Symposium of the Animal Anatomy and Tissue Embryology Branch of the Chinese Association of Animal Husbandry and Veterinary Medicine, 2016: 15. (in Chinese) | |
10 | WANG B , HE J , CUI Y , et al. The HIF-1α/EGF/EGFR signaling pathway facilitates the proliferation of yak alveolar type Ⅱ epithelial cells in hypoxic conditions[J]. Int J Mol Sci, 2024, 25 (3): 1442. |
11 | XIE X , WEI Y , CUI Y , et al. Transcriptomics reveals age-related changes in ion transport-related factors in yak lungs[J]. Front Vet Sci, 2024, 11, 1374794. |
12 | HE J , WEI Y , CUI Y , et al. Distribution and expression of pulmonary ionocyte-related factors CFTR, ATP6V0D2, and ATP6V1C2 in the lungs of yaks at different ages[J]. Genes (Basel), 2023, 14 (3): 597. |
13 | XIN J W , CHAI Z X , JIANG H , et al. Genome-wide comparison of DNA methylation patterns between yak and three cattle strains and their potential association with mRNA transcription[J]. J Exp Zool B Mol Dev Evol, 2023, 340 (4): 316- 328. |
14 | 杨德彬, 张燕, 金天虎, 等. 犏牛主要经济性状的研究进展[J]. 四川畜牧兽医, 2015, 42 (11): 36- 38. |
YANG D B , ZHANG Y , JIN T H , et al. Research progress on the main economic traits of Pian cattle[J]. Sichuan Animal Husbandry and Veterinary Medicine, 2015, 42 (11): 36- 38. | |
15 | SLINGO M E . Oxygen-sensing pathways and the pulmonary circulation[J]. J Physiol, 2024, 602 (21): 5619- 5629. |
16 | 刘慧颖, 王浩, 李慧颖, 等. ABCA3参与的磷脂代谢在其相关肺疾病中的研究进展[J]. 临床肺科杂志, 2023, 28 (10): 1577- 1581. |
LIU H Y , WANG H , LI H Y , et al. Research progress on ABCA3-mediated phospholipid metabolism in related pulmonary diseases[J]. Journal of Clinical Pulmonology, 2023, 28 (10): 1577- 1581. | |
17 | AILI A , WANG Y , SHANG Y , et al. LPG 18:0 is a general biomarker of asthma and inhibits the differentiation and function of regulatory T-cells[J]. Eur Respir J, 2024, 64 (6): 2301752. |
18 | LI N , SU S , XIE X , et al. Tsantan Sumtang, a traditional Tibetan medicine, protects pulmonary vascular endothelial function of hypoxia-induced pulmonary hypertension rats through AKT/eNOS signaling pathway[J]. J Ethnopharmacol, 2024, 320, 117436. |
19 | 王强, 陈静, 赵玉婷, 等. 探索α-亚麻酸的健康奥秘: 强化膳食, 延长生命质量[J]. 营养学报, 2023, 45 (4): 331- 336. |
WANG Q , CHEN J , ZHAO Y T , et al. Exploring the health benefits of α-linolenic acid: Enhancing diet and prolonging life quality[J]. Acta Nutrimenta Sinica, 2023, 45 (4): 331- 336. | |
20 | ROHRS E C , BASSI T G , FERNANDEZ K C , et al. Diaphragm neurostimulation during mechanical ventilation reduces atelectasis and transpulmonary plateau pressure, preserving lung homogeneity and PaO2/FIO2[J]. J Appl Physiol, 2021, 131 (1): 290- 301. |
21 | PHILLIPS J D . Heme biosynthesis and the porphyrias[J]. Mol Genet Metab, 2019, 128 (3): 164- 177. |
22 | BELOT A , PUY H , HAMZA I , et al. Update on heme biosynthesis, tissue-specific regulation, heme transport, relation to iron metabolism and cellular energy[J]. Liver Int, 2024, 44 (9): 2235- 2250. |
23 | DUCAMP S , SENDAMARAI A K , CAMPAGNA D R , et al. Murine models of erythroid 5ALA synthesis disorders and their conditional synthetic lethal dependency on pyridoxine[J]. Blood, 2024, 144 (13): 1418- 1432. |
24 | DING Y , YANG K , LIU X , et al. A novel ALAS2 mutation causes congenital sideroblastic anemia[J]. Mediterr J Hematol Infect Dis, 2023, 15 (1): e2023062. |
25 | KHECHADURI A , BAYEVA M , CHANG H C , et al. Heme levels are increased in human failing hearts[J]. J Am Coll Cardiol, 2013, 61 (18): 1884- 1893. |
26 | HOFER T , WENGER R H , KRAMER M F , et al. Hypoxic upregulation of erythroid 5-aminolevulinate synthase[J]. Blood, 2003, 101 (1): 348- 350. |
27 | LORIA F , COX H D , VOSS S C , et al. The use of RNAbased 5'-aminolevulinate synthase 2 biomarkers in dried blood spots to detect recombinant human erythropoietin microdoses[J]. Drug Test Anal, 2022, 14 (5): 826- 832. |
28 | KHALIFA O , AL-AKL N S , ARREDOUANI A . Differential expression of cardiometabolic and inflammation markers and signaling pathways between overweight/obese Qatari adults with high and low plasma salivary α-amylase activity[J]. Front Endocrinol (Lausanne), 2024, 15, 1421358. |
29 | CHEN Y , YAN H , YAN L , et al. Hypoxia-induced ALDH3A1 promotes the proliferation of non-small-cell lung cancer by regulating energy metabolism reprogramming[J]. Cell Death Dis, 2023, 14 (9): 617. |
30 | ZHOU X , GUO Z , LIU S , et al. Transcriptomics and molecular docking reveal the potential mechanism of lycorine against pancreatic cancer[J]. Phytomedicine, 2024, 122, 155128. |
31 | LOU Y X , SHI E D , YANG R , et al. Exploring the mechanisms of glycolytic genes involvement in pulmonary arterial hypertension through integrative bioinformatics analysis[J]. J Cell Mol Med, 2024, 28 (11): e18447. |
32 | CHEN M , MAINARDI S , LIEFTINK C , et al. Targeting of vulnerabilities of drug-tolerant persisters identified through functional genetics delays tumor relapse[J]. Cell Rep Med, 2024, 5 (3): 101471. |
33 | WANG B , HE Y , WANG B , et al. ALDH3A1 overexpression in OSCC inhibits inflammation via phospho-Ser727 at STAT3 in tumor-associated macrophages[J]. Oral Dis, 2023, 29 (4): 1513- 1524. |
34 | SINGHRAO S K , CONSOLI C . Identifying Alzheimer 's disease genes in apolipoprotein E-/- mice brains with confirmed Porphyromonas gingivalis entry[J]. J Alzheimers Dis Rep, 2025, 9, 25424823251332874. |
35 | GODOY J A , LINDSAY C B , QUINTANILLA R A , et al. Quercetin exerts differential neuroprotective effects against H2O2 and Aβ aggregates in hippocampal neurons: the role of mitochondria[J]. Mol Neurobiol, 2017, 54 (9): 7116- 7128. |
36 | ZHANG Y D , ZHONG R , LIU J Q , et al. Role of synaptotagmin 13 (SYT13) in promoting breast cancer and signaling pathways[J]. Clin Transl Oncol, 2023, 25 (6): 1629- 1640. |
37 | 赵子瑜, 刘启玲, 姚金余, 等. 低氧导致小鼠注意缺陷多动障碍样行为及其突触损伤机制[J]. 空军军医大学学报, 2023, 44 (3): 229- 234. |
ZHAO Z Y , LIU Q L , YAO J Y , et al. Attention deficit hyperactivity disorder-like behavior caused by hypoxia and its synaptic injury mechanism in mice[J]. Journal of Air Force Military Medical University, 2023, 44 (3): 229- 234. | |
38 | NIZZARDO M , TAIANA M , RIZZO F , et al. Synaptotagmin 13 is neuroprotective across motor neuron diseases[J]. Acta Neuropathol, 2020, 139 (5): 837- 853. |
39 | XU H , ZHANG L B , LUO Y Y , et al. Synaptotagmins family affect glucose transport in retinal pigment epithelial cells through their ubiquitination-mediated degradation and glucose transporter-1 regulation[J]. World J Diabetes, 2024, 15 (5): 958- 976. |
40 | MERRIMAN K E , POWELL J L , SANTOS J E P , et al. Intramammary 25-hydroxyvitamin D3 treatment modulates innate immune responses to endotoxin-induced mastitis[J]. J Dairy Sci, 2018, 101 (8): 7593- 7607. |
41 | DU J , RUI F , HAO Z , et al. Transcription factor E2F1 regulates the expression of ADRB2[J]. Int J Anal Chem, 2023, 2023, 8210685. |
42 | GAO X , WANG S , WANG Y F , et al. Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak[J]. Nat Commun, 2022, 13 (1): 4887. |
43 | AN Z F , ZHAO K , WEI L N , et al. p53 gene cloning and response to hypoxia in theplateau zokor, Myospalax baileyi[J]. Anim Biol, 2018, 68 (3): 289- 308. |
44 | 刘芳, 乌仁图雅, 马兰, 等. 高海拔低氧适应物种藏羚羊低氧诱导因子1Α的基因克隆与表达[J]. 生理学报, 2011, 63 (6): 565- 573. |
LIU F , WUREN T , MA L , et al. , Genetic cloning and expression of hypoxia inducible factor 1 alpha in high altitude hypoxic adaptation species Tibetan antelope (Pantholops hodgsonii)[J]. Sheng Li Xue Bao, 2011, 63 (6): 565- 573. | |
45 | WANG H , LIU D , SONG P , et al. , Exposure to hypoxia causes stress erythropoiesis and downregulates immune response genes in spleen of mice[J]. BMC Genomics, 2021, 22 (1): 413. |
46 | HE X , SONG S , AYON R J , et al. Hypoxia selectively upregulates cation channels and increases cytosolic[Ca2+] in pulmonary, but not coronary, arterial smooth muscle cells[J]. Am J Physiol Cell Physiol, 2018, 314 (4): C504- C517. |
47 | PENG G , RAN P , LU W , et al. Acute hypoxia activates store-operated Ca(2+) entry and increases intracellular Ca(2+) concentration in rat distal pulmonary venous smooth muscle cells[J]. J Thorac Dis, 2013, 5 (5): 605- 612. |
48 | 姚敏. PLIγ重组表达载体构建及其抗LPS诱导的THP-1细胞炎症作用[D]. 南昌: 南昌大学, 2014. |
YAO M. Construction of recombinant PLIγ expression vector and its anti-inflammatory effect on LPS-induced THP-1 cells[D]. Nanchang: Nanchang University, 2014. (in Chinese) |
[1] | 张虔, 马睿, 崔燕, 余四九. AMPK/SIRT1介导脂联素促进牦牛睾丸支持细胞乳酸转运的分子机制[J]. 畜牧兽医学报, 2025, 56(7): 3495-3506. |
[2] | 牛悦悦, 崔燕, 余四九, 何俊峰, 杨珊珊, 祁正满, 豆婉婉, 陈春燕, 邓演江. 不同年龄牦牛肺脏中JAK2、STAT3、P-JAK2/STAT3及PCNA蛋白的表达分析[J]. 畜牧兽医学报, 2025, 56(6): 2957-2967. |
[3] | 卢增华, 崔燕, 余四九, 白雪峰, 卢鸿琴, 何俊峰, 卢凯, 翟国亮, 祁正满. 促红细胞生成素对牦牛肾间质成纤维细胞凋亡因子表达的影响[J]. 畜牧兽医学报, 2024, 55(8): 3460-3471. |
[4] | 彭章蓉, 孙皓然, 张乔儒, 杨颖, 郭鸿莹, 常彤, 赵卉, 张铁涛. 不同年龄梅花鹿肌内脂肪沉积规律及其对风味品质影响[J]. 畜牧兽医学报, 2024, 55(8): 3541-3551. |
[5] | 马密兰, 王琪, 颜秋, 李天安, 赵兴绪, 张勇. 缺氧诱导基因1C在牦牛隐睾中的表达及其调控机制研究[J]. 畜牧兽医学报, 2024, 55(7): 2983-2994. |
[6] | 刘博华, 符汉宇, 王玉恒, 索朗斯珠, 牛家强, 包玉花, 李家奎, 徐业芬. 西藏那曲市牦牛源B型多杀性巴氏杆菌的分离鉴定及基因组分析[J]. 畜牧兽医学报, 2024, 55(7): 3105-3118. |
[7] | 罗婷, 韩著, 徐业芬, 蔡林, 索朗斯珠, 徐晋花, 牛家强. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167. |
[8] | 黄显朋, 邢嘉仪, 白媛媛, 姜雨婷, 麻志伟, 付伟, 兰道亮. 牦牛六个多能性相关转录因子OSKMNL的克隆和多顺反子慢病毒载体的构建[J]. 畜牧兽医学报, 2024, 55(4): 1579-1591. |
[9] | 尚恺圆, 江明锋, 官久强, 安添午, 赵洪文, 柏琴, 吴伟生, 李华德, 谢荣清, 沙泉, 罗晓林, 张翔飞. 围产期母体营养调控对犊牦牛生长发育、血清生化及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55(4): 1638-1648. |
[10] | 徐东辉, 徐宇辉, 李瑞哲, 成海建, 马志杰. 牦牛基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(3): 933-943. |
[11] | 左子珍, 王海波, 柴志欣, 符健慧, 张翔飞, 罗晓林, 钟金城. 过瘤胃蛋氨酸对牦牛半腱肌肉品质、挥发性风味物质及脂肪酸组成的影响[J]. 畜牧兽医学报, 2024, 55(3): 1102-1114. |
[12] | 刘斌, 王萌, 潘阳阳, 王靖雷, 徐庚全. LPA对牦牛卵丘细胞扩张因子HAS2、PTGS2和PTX3表达的影响[J]. 畜牧兽医学报, 2024, 55(2): 552-561. |
[13] | 王娟, 姚学强, 陆林林, 李江, 周凯仁, 翟斌涛, 周绪正, 张继瑜. 复方羟氯扎胺混悬液对牦牛肝片吸虫和线虫的临床药效试验[J]. 畜牧兽医学报, 2024, 55(11): 5259-5266. |
[14] | 刘益丽, 唐娇, 闵奇, 杨露, 王泽宁, 胡莲, 赵迪, 江明锋. 基于转录组数据挖掘牦牛皱胃发育代谢的关键候选基因[J]. 畜牧兽医学报, 2024, 55(1): 153-168. |
[15] | 姚颖, 周应聪, 杜培岩, 李一娟, 钱文洁, 李柳杨, 余志鹏, 崔燕, 余四九, 樊江峰. 基于TMT技术的牦牛妊娠期血清蛋白质组学分析[J]. 畜牧兽医学报, 2024, 55(1): 192-206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||