| 1 |
DAVID L A , MAURICE C F , CARMODY R N , et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505 (7484): 559- 563.
doi: 10.1038/nature12820
|
| 2 |
李新科, 杨雪, 张萱, 等. 短链脂肪酸对肠道屏障保护作用的研究进展[J]. 动物营养学报, 2024, 36 (8): 4861- 4871.
|
|
LI X K , YANG X , ZHANG X , et al. Research progress on protective effects of short chain fatty acids on intestinal barrier[J]. Chinese Journal of Animal Nutrition, 2024, 36 (8): 4861- 4871.
|
| 3 |
杨雪, 高亚男, 王加启, 等. 短链脂肪酸的功能研究进展[J]. 食品科学, 2023, 44 (13): 408- 417.
|
|
YANG X , GAO Y N , WANG J Q , et al. Research progress on the functions of short chain fatty acid[J]. Food Science, 2023, 44 (13): 408- 417.
|
| 4 |
LI Y , HUANG Y , LIANG H , et al. The roles and applications of short-chain fatty acids derived from microbial fermentation of dietary fibers in human cancer[J]. Front Nutr, 2023, 10, 1243390.
doi: 10.3389/fnut.2023.1243390
|
| 5 |
钟颂石, 刘亚力, 黄兴国, 等. 短链脂肪酸对宿主肠道免疫的调控机制及其在畜禽生产中的研究进展[J]. 动物营养学报, 2022, 34 (5): 2820- 2830.
|
|
ZHONG S S , LIU Y L , HUANG X G , et al. Research progress in regulation mechanism of short-chain fatty acids on host intestinal immunity and its application in livestock and poultry production[J]. Chinese Journal of Animal Nutrition, 2022, 34 (5): 2820- 2830.
|
| 6 |
LIU L , LI Q , YANG Y , et al. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry[J]. Front Vet Sci, 2021, 8, 736739.
doi: 10.3389/fvets.2021.736739
|
| 7 |
SINGH A K , KIM W K . Effects of dietary fiber on nutrients utilization and gut health of poultry: A review of challenges and opportunities[J]. Animals, 2021, 11 (1): 181.
doi: 10.3390/ani11010181
|
| 8 |
MA J , PIAO X , MAHFUZ S , et al. The interaction among gut microbes, the intestinal barrier and short chain fatty acids[J]. Anim Nutr, 2022, 9, 159- 174.
doi: 10.1016/j.aninu.2021.09.012
|
| 9 |
王海波, 占今舜, 霍俊宏, 等. 短链脂肪酸的生理功能及其在动物生产中的应用研究进展[J]. 中国畜牧杂志, 2023, 59 (11): 30- 36.
|
|
WANG H B , ZHAN J S , HUO J H , et al. Physiological function of short-chain fatty acids and their application in livestock and poultry production[J]. Chinese Journal of Animal Nutrition, 2023, 59 (11): 30- 36.
|
| 10 |
RICKE S C , DITTOE D K , RICHARDSON K E . Formic acid as an antimicrobial for poultry production: A review[J]. Front Vet Sci, 2020, 7, 563.
doi: 10.3389/fvets.2020.00563
|
| 11 |
CHEN D , WANG Y Y , LI S P , et al. Maternal propionate supplementation ameliorates glucose and lipid metabolic disturbance in hypoxia-induced fetal growth restriction[J]. Food Funct, 2022, 13 (20): 10724- 10736.
doi: 10.1039/D2FO01481E
|
| 12 |
HE J , ZHANG P , SHEN L , et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism[J]. Int J Mol Sci, 2020, 21 (17): 6356.
doi: 10.3390/ijms21176356
|
| 13 |
KUMARI B , KUMARI U , SINGH D K , et al. Molecular targets of valeric acid: a bioactive natural product for endocrine, metabolic, and immunological disorders[J]. Endocr Metab Immune, 2024, 24 (13): 1506- 1517.
|
| 14 |
JOHNSON C P , BLASCO P A . Infant growth and development[J]. Pediatr Rev, 1997, 18 (7): 224- 242.
doi: 10.1542/pir.18-7-224
|
| 15 |
COHEN KADOSH K , MUHARDI L , PARIKH P , et al. Nutritional support of neurodevelopment and cognitive function in infants and young children-an update and novel insights[J]. Nutrients, 2021, 13 (1): 199.
doi: 10.3390/nu13010199
|
| 16 |
HOLM S R , JENKINS B J , CRONIN J G , et al. A role for metabolism in determining neonatal immune function[J]. Pediat Allerg Imm-Uk, 2021, 32 (8): 1616- 1628.
doi: 10.1111/pai.13583
|
| 17 |
CERDO T , NIETO-RUIZ A , GARCIA-SANTOS J A , et al. Current knowledge about the impact of maternal and infant nutrition on the development of the microbiota-gut-brain axis[J]. Annu Rev Nutr, 2023, 43, 251- 278.
doi: 10.1146/annurev-nutr-061021-025355
|
| 18 |
SCHNEIDER N , GARCIA-RODENAS C L . Early nutritional interventions for brain and cognitive development in preterm infants: a review of the literature[J]. Nutrients, 2017, 9 (3): 187.
doi: 10.3390/nu9030187
|
| 19 |
孙世光, 王婧婧, 李自发, 等. 旷场实验: 昆明小鼠行为学评价方法的重测信度检验[J]. 中华行为医学与脑科学杂志, 2010 (12): 1093- 1095.
|
|
SUN S G , WANG J J , LI Z F , et al. The open field test as a method for ethology in Kunming mice: test-retest reliability[J]. Chinese Journal of Behavioral Medicine and Brain Science, 2010 (12): 1093- 1095.
|
| 20 |
SEIBENHENER M L , WOOTEN M C . Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice[J]. J Vis Exp, 2015 (96): e52434.
|
| 21 |
陆松翠, 郑楠, 王加启, 等. 短链脂肪酸的生物学功能研究进展[J]. 动物营养学报, 2024, 36 (6): 3514- 3524.
|
|
LU S C , ZHENG N , WANG J Q , et al. Research progress on biological function of short-chain fatty acids[J]. Chinese Journal of Animal Nutrition, 2024, 36 (6): 3514- 3524.
|
| 22 |
张心壮. 添加丙酸钙对奶公犊生长性能的影响和调控瘤胃发育机理的研究[D]. 北京: 中国农业大学, 2016.
|
|
ZHANG X Z. Effects of calcium propionate supplementation on growth performance and the mechanism of rumen development in dairy calves[D]. Beijing: China Agricultural University, 2016. (in Chinese)
|
| 23 |
KOVANDA L , PARK J , PARK S , et al. Dietary butyrate and valerate glycerides impact diarrhea severity and immune response of weaned piglets under ETEC F4-ETEC F18 coinfection conditions[J]. J Anim Sci, 2023, 101, skad401.
doi: 10.1093/jas/skad401
|
| 24 |
MARROCCO F , DELLI CARPINI M , GAROFALO S , et al. Short-chain fatty acids promote the effect of environmental signals on the gut microbiome and metabolome in mice[J]. Commun Biol, 2022, 5 (1): 517.
doi: 10.1038/s42003-022-03468-9
|
| 25 |
朱慧越, 邹仁英, 许梦舒, 等. 短链脂肪酸-酰化淀粉对小鼠抑郁样行为的缓解及机制[J]. 食品与发酵工业, 2021, 47 (6): 26- 33.
|
|
ZHU H Y , ZOU R Y , XU M S , et al. Short chain fatty acid-acylated starch alleviates depression-like behaviors in mice and its mechanisms[J]. Food and Fermentation Industries, 2021, 47 (6): 26- 33.
|
| 26 |
TANG C F , WANG C Y , WANG J H , et al. Short-chain fatty acids ameliorate depressive-like behaviors of high fructose-fed mice by rescuing hippocampal neurogenesis decline and blood-brain barrier damage[J]. Nutrients, 2022, 14 (9): 1882.
doi: 10.3390/nu14091882
|
| 27 |
LIU J M , LI H J , GONG T Y , et al. Anti-neuroinflammatory effect of short-chain fatty acid acetate against alzheimer's disease via upregulating GPR41 and inhibiting ERK/JNK/NF-κB[J]. J Agric Food Chem, 2020, 68 (27): 7152- 7161.
doi: 10.1021/acs.jafc.0c02807
|
| 28 |
ZHAO J , ZHANG X , LI Y , et al. Interorgan communication with the liver: novel mechanisms and therapeutic targets[J]. Front Immunol, 2023, 14, 1314123.
doi: 10.3389/fimmu.2023.1314123
|
| 29 |
SAVIANO A , HENDERSON N C , BAUMERT T F . Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology[J]. J Hepatol, 2020, 73 (5): 1219- 1230.
doi: 10.1016/j.jhep.2020.06.004
|
| 30 |
GONG J , TU W , LIU J , et al. Hepatocytes: A key role in liver inflammation[J]. Front Immunol, 2022, 13, 1083780.
|
| 31 |
BRANDL K , SCHNABL B . Intestinal microbiota and nonalcoholic steatohepatitis[J]. Curr Opin Gastroenterol, 2017, 33 (3): 128- 133.
doi: 10.1097/MOG.0000000000000349
|
| 32 |
EL HAGE R , HERNANDEZ-SANABRIA E , CALATAYUD ARROYO M , et al. Supplementation of a propionate-producing consortium improves markers of insulin resistance in an in vitro model of gut-liver axis[J]. Am J Physiol Endocrinol Metab, 2020, 318 (5): 742- 749.
doi: 10.1152/ajpendo.00523.2019
|
| 33 |
DUSCHA A , GISEVIUS B , HIRSCHBERG S , et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism[J]. Cell, 2020, 180 (6): 1067- 1080.e16.
doi: 10.1016/j.cell.2020.02.035
|
| 34 |
DEN BESTEN G , LANGE K , HAVINGA R , et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids[J]. Am J Physiol-Gastroint Liver Physiol, 2013, 305 (12): 900- 910.
doi: 10.1152/ajpgi.00265.2013
|