[1] ANES E, PIRES D, MANDAL M, et al. ESAT-6 a Major virulence factor of mycobacterium tuberculosis[J]. Biomolecules, 2023, 13(6): 968. [2] KOCH A, MIZRAHI V. Mycobacterium tuberculosis[J]. Trends Microbiol, 2018, 26(6): 555-556. [3] KANABALAN R D, LEE L J, LEE T Y, et al. Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery[J]. Microbiol Res, 2021, 246: 126674. [4] EHRT S, SCHNAPPINGER D, RHEE K Y. Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis [J]. Nat Rev Microbiol, 2018, 16(8): 496-507. [5] World Organisation for Animal Health. Report of the meeting of the ad hoc group on alternative strategies for the control and elimination of Mycobacterium tuberculosis complex infection (MTBC) in livestock[C/OL]. Paris, France, 2024.[2025-07-02]https://www.woah.org/app/uploads/2024/02/en-20240222-ahg-mtb-report.pdf. [6] 世界动物卫生组织. 哺乳动物、禽、蜜蜂A和B类疾病诊断试验和疫苗标准手册[M].北京:中国农业出版社,2002:337-349. World Organisation for Animal Health. Manual of diagnostic tests and vaccines for terrestrial animals (mammals, birds and bees): List A and B diseases[M]. Beijing: China Agriculture Press, 2002: 337-349. (in Chinese) [7] ZHAO D, SONG Y H, LI D, et al. Mycobacterium tuberculosis Rv3435c regulates inflammatory cytokines and promotes the intracellular survival of recombinant Mycobacteria[J]. Acta tropica, 2023, 246: 106974. [8] SINGH A K, CARETTE X, POTLURI L P, et al. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system[J]. Nucl Acids Res, 2016, 44(18): e143. [9] LU Q, ZHANG W, FANG J, et al. Mycobacterium tuberculosis Rv1096, facilitates mycobacterial survival by modulating the NF-κB/MAPK pathway as peptidoglycan N-deacetylase[J]. Mol Immunol, 2020, 127: 47-55. [10] XIA A, LI X, QUAN J, et al. Mycobacterium tuberculosis Rv0927c inhibits NF-κB pathway by downregulating the phosphorylation level of IκBα and enhances Mycobacterial survival[J]. Front Immunol, 2021, 12: 721370. [11] 韩 梅, 韩 璞, 邹静波. 结核分枝杆菌感染与细胞因子的关系[J]. 检验医学与临床,2021, 18(2): 270-272. HAN M, HAN P, ZOU J B, et al. Relationship between Mycobacterium tuberculosis infection and cytokines[J]. Laboratory Medicine and Clinical, 2021, 18(2): 270-272. (in Chinese) [12] 付加芳,张佩佩,古苑欣,等.结核分枝杆菌Rv1057基因对巨噬细胞感染早期细胞因子表达的影响分析[J].生命科学研究,2017,21(6):494-500. FU J F, ZHANG P P, GU Y X, et al. Effect of Mycobacterium tuberculosis Rv1057 gene on the cytokine expression in the early stage of macrophage infection[J]. Life Science Research, 2017, 21(6): 494-500. (in Chinese) [13] 张泽霖. Viperin通过IRAK1-TRAF6-TAK1负调节炎症细胞因子和NO促进结核分枝杆菌感染[D]. 广州:南方医科大学, 2020. ZHANG Z L. Viperin impairs innate immune response through IRAK1-TRAF6-TAK1 axis to promote Mycobacterium tuberculosis infection[D]. Guangzhou: Southern Medical University, 2020. (in Chinese) [14] 邓傲竹, 张少言, 冯 雅, 等. 结核分枝杆菌与巨噬细胞:从感染机制到免疫逃逸策略的研究进展[C]//第35届中国防痨协会全国学术大会暨第四届中国防痨科技颁奖大会. 湖州, 2024. DENG A Z, ZHANG S Y, FENG Y, et al. Mycobacterium tuberculosis and macrophages: Research progress from infection mechanisms to immune escape strategies[C]//Proceedings of the 35th National Academic Conference of China Anti-Tuberculosis Association and the 4th China Anti-Tuberculosis Science and Technology Award Conference. Huzhou, Zhejiang, China, 2024. (in Chinese) [15] 李 娜, 宋银娟, 储岳峰. 结核分枝杆菌免疫逃逸机制研究进展[J]. 科学通报,2024, 69(Z1): 531-41. LI N, SONG Y J, CHU Y F. Research advances in immune evasion mechanisms of Mycobacterium tuberculosis[J]. Chinese Science Bulletin, 2024, 69(Z1): 531-541. (in Chinese) [16] 李玉洁, 余海燕, 杨雨婷, 等. 结核分枝杆菌分泌蛋白早期分泌性抗原6(ESAT-6)的免疫学性质及其在新型疫苗中作用的研究进展[J]. 细胞与分子免疫学杂志,2024, 40(1): 89-94. LI Y J, YU H Y, YANG Y T, et al. Immunological properties of Mycobacterium tuberculosis-secreted early secretory antigenic target 6 (ESAT-6) and its role in novel vaccines[J]. Cellular & Molecular Immunology, 2024, 40(1): 89-94. (in Chinese) [17] AKASHI S, SUZUKAWA M, TAKEDA K, et al. IL-1RA in the supernatant of QuantiFERON-TB Gold In-Tube and QuantiFERON-TB Gold Plus is useful for discriminating active tuberculosis from latent infection[J]. J Infect Chemother, 2021, 27(4): 617-624. [18] 马子淳, 尚媛媛, 逄 宇,等. 趋化因子用于结核病诊断的研究进展[J]. 中国防痨杂志,2023, 45(3): 305-310. MA Z C, SHANG Y Y, PANG Y, et al. Research progress on the application of chemokines in the diagnosis of tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(3): 305-310. (in Chinese) [19] WANG T, QUIJADA D, AHMENDA T, et al. Targeting CCRL2 enhances therapeutic outcomes in a tuberculosis mouse model[J]. bioRxiv, 2024: 2024.09.23.614576. [20] KUMAR N P, MOIDEEN K, NANCY A, et al. Plasma chemokines are baseline predictors of unfavorable treatment outcomes in pulmonary tuberculosis[J]. Clin Infect Dis, 2021, 73(9): e3419-e3427. [21] HUANG H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances[J]. Sensors (Basel), 2018, 18(10):3249. [22] SEITZ-HOLLAND J, ALEMN-GÓMEZ Y, CHO K I K, et al. Matrix metalloproteinase 9 (MMP-9) activity, hippocampal extracellular free water, and cognitive deficits are associated with each other in early phase psychosis[J]. Neuropsychopharmacology, 2024, 49(7): 1140-1150. [23] 李军霞, 赵 青, 何红彦, 等. 基质金属蛋白酶-9与血脑屏障和结核性脑膜炎[J]. 中国感染与化疗杂志,2017, 17(4): 463-467. LI J X, ZHAO Q, HE H Y, et al. Matrix metalloproteinase-9 and its role in the blood-brain barrier and tuberculous meningitis[J]. Chinese Journal of Infection and Chemotherapy, 2017, 17(4): 463-467. (in Chinese) [24] 杨泽伟, 冯 飞, 杨 颖, 等. 脑脊液ESAT-6、ADA、INF-γ、MMP-9检测在结核性脑膜炎诊断及转归中的应用价值[J]. 山东医药,2018, 58(18): 56-58. YANG Z W, FENG F, YANG Y, et al. Diagnostic and prognostic value of ESAT-6, ADA, INF-γ, and MMP-9 in cerebrospinal fluid for tuberculous meningitis[J]. Shandong Medical Journal, 2018, 58(18): 56-58. (in Chinese) [25] 王 霞, 黄 健, 牛文一, 等. IFN-γ、MMP-9水平在肺结核中的表达及与其病情活动性的相关性[J]. 分子诊断与治疗杂志,2024, 16(7): 1372-1376. WANG X, HUANG J, NIU W Y, et al. Expression of IFN-γ and MMP-9 in pulmonary tuberculosis and their correlation with disease activity[J]. Journal of Molecular Diagnostics and Therapy, 2024, 16(7): 1372-1376. (in Chinese) [26] 韦 爽. 血清MMP-9、MMP-2、TIMP-1及TIMP-2在婴幼儿肺炎中的表达水平及临床意义[D]. 遵义:遵义医科大学, 2023. WEI S. Expression and clinical significance of serum MMP-9, MMP-2, TIMP-1, and TIMP-2 in infantile pneumonia[D]. Zunyi: Zunyi Medical University, 2023. (in Chinese) [27] LI C, DENG T, CAO J, et al. Identifying ITGB2 as a potential prognostic biomarker in ovarian cancer[J]. Diagnostics (Basel, Switzerland), 2023, 13(6):1169. [28] 贾红彦, 董 静, 张宗德, 等. 结核分枝杆菌感染的免疫学检测技术研究进展及临床应用现状[J]. 中国防痨杂志,2022, 44(07): 720-6. JIA H Y, DONG J, ZHANG Z D, et al. Advances in immunological detection techniques and clinical applications of Mycobacterium tuberculosis infection[J]. Chinese Journal of Antituberculosis, 2022, 44(7): 720-726. (in Chinese) [29] 潘 琳, 蔡睿志, 陶 金, 等. IL-6经NF-κB信号通路上调人胎盘MSC SPP1表达促进M2型巨噬细胞极化的作用机制研究[J]. 细胞与分子免疫学杂志,2024, 40(11): 961-967. PAN L, CAI R Z, TAO J, et al. IL-6 promotes M2 macrophage polarization via NF-κB signaling pathway by upregulating SPP1 expression in human placental MSCs[J]. Cellular & Molecular Immunology, 2024, 40(11): 961-967. (in Chinese) [30] WANG C, LI Y, WANG L, et al. SPP1 represents a therapeutic target that promotes the progression of oesophageal squamous cell carcinoma by driving M2 macrophage infiltration[J]. Br J Cancer, 2024, 130(11): 1770-1782. [31] KOGUCHI Y, KAWAKAMI K, UEZU K, et al. High plasma osteopontin level and its relationship with interleukin-12-mediated type 1 T helper cell response in tuberculosis[J]. Am J Respir Crit Care Med, 2003, 167(10): 1355-1359. [32] NAU G J, LIAW L, CHUPP G L, et al. Attenuated host resistance against Mycobacterium bovis BCG infection in mice lacking osteopontin[J]. Infect Immun, 1999, 67(8): 4223-4230. [33] 申福国, 杨 钰, 孔维丽, 等. 肺结核病合并骨结核患者血清中KL-6和OPN表达及临床意义[J]. 中国防痨杂志,2024, 46(S1): 91-93. SHEN F G, YANG Y, KONG W L, et al. Expression and clinical significance of serum KL-6 and OPN in pulmonary tuberculosis patients with bone tuberculosis[J]. Chinese Journal of Antituberculosis, 2024, 46(S1): 91-93. (in Chinese) [34] 吴 轶. 胸腔积液癌胚抗原与血清癌胚抗原比值和胸腔积液分泌性磷蛋白1在鉴别结核性胸腔积液和肺癌所致胸腔积液中的应用价值[J]. 广西医学,2020, 42(12): 1503-1506. WU Y. Value of pleural fluid CEA/serum CEA ratio and pleural fluid SPP1 in differentiating tuberculous pleural effusion from lung cancer-related effusion[J]. Guangxi Medical Journal, 2020, 42(12): 1503-1506. (in Chinese) [35] HATTORI T, IWASAKI-HOZUMI H, BAI G, et al. Both full-length and protease-cleaved products of osteopontin are elevated in infectious diseases[J]. Biomedicines, 2021, 9(8):1006. [36] MAHMUD F J, DU Y, GREIF E, et al. Osteopontin/secreted phosphoprotein-1 behaves as a molecular brake regulating the neuroinflammatory response to chronic viral infection[J]. J Neuroinflammation, 2020, 17(1): 273. [37] ARGANDONA LOPEZ C, BROWN A M. Microglial- neuronal crosstalk in chronic viral infection through mTOR, SPP1/OPN and inflammasome pathway signaling[J]. Front Immunol, 2024, 15: 1368465. [38] 孙冰生,张真发. 骨桥蛋白及其受体CD44v对肿瘤侵袭调控的研究进展[J].中国肺癌杂志,2015,18 (11): 714-717. SUN B S, ZHANG Z F. Advances in research of osteopontion and its receptor CD44v in tumor invasion and metastasis[J]. Chinese Journal of Lung Cancer, 2015, 18(11): 714-717. (in Chinese) [39] 梁文婷, 霍开明, 古裕鸟, 等. 肺炎支原体肺炎患儿血清MICA、OPN水平及其与反复呼吸道感染的相关性研究[J]. 检验医学与临床,2024, 21(13): 1870-1874. LIANG W T, HUO K M, GU Y N, et al. Correlation between serum MICA, OPN levels and recurrent respiratory infections in children with Mycoplasma pneumoniae pneumonia[J]. Laboratory Medicine and Clinical, 2024, 21(13): 1870-1874. (in Chinese) [40] ICER M A, GEZMEN-KARADAG M. The multiple functions and mechanisms of osteopontin[J]. Clin Biochem, 2018, 59: 17-24. |