

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (9): 4452-4460.doi: 10.11843/j.issn.0366-6964.2025.09.026
覃阳1,2(
), 夏嗣廷1, 何流琴3, 王天丽2, 刘宇炎3, 姜肖翰3, 刘智豪2, 刘思危3, 李铁军2,*(
), 印遇龙1,2,*(
)
收稿日期:2024-11-19
出版日期:2025-09-23
发布日期:2025-09-30
通讯作者:
李铁军,印遇龙
E-mail:1547558068@qq.com;tjli@isa.ac.cn;yinyulong@isa.ac.cn
作者简介:覃阳(2000-),男,四川达州人,硕士生,主要从事动物营养与饲料科学研究,E-mail:1547558068@qq.com
基金资助:
QIN Yang1,2(
), XIA Siting1, HE Liuqin3, WANG Tianli2, LIU Yuyan3, JIANG Xiaohan3, LIU Zhihao2, LIU Siwei3, LI Tiejun2,*(
), YIN Yulong1,2,*(
)
Received:2024-11-19
Online:2025-09-23
Published:2025-09-30
Contact:
LI Tiejun, YIN Yulong
E-mail:1547558068@qq.com;tjli@isa.ac.cn;yinyulong@isa.ac.cn
摘要:
旨在探究慢性氧化应激对断奶仔猪器官组织微量元素的影响。试验选用12头断奶杜长大三元杂交仔猪,随机平均分为对照组和氧化应激组,每组6头,对照组饲喂基础饲粮,氧化应激组在基础饲粮中额外添加10 g·kg-1体重剂量的D-半乳糖。试验检测了断奶仔猪器官组织中微量元素含量及其表观消化率。试验结果表明:氧化应激组断奶仔猪肝中Mn的含量、肾中Fe和Mn含量、空肠中Zn含量和结肠中Fe、Cu和Mn含量均显著低于对照组(P<0.05);而氧化应激组断奶仔猪肝中Fe和Zn含量、空肠中Fe和Cu含量、回肠中Fe和Cu含量均显著高于对照组(P<0.05)。与对照组相比,氧化应激组断奶仔猪Cu、Fe和Mn的表观消化率显著降低(P < 0.05)。综上所述,D-半乳糖诱导的慢性氧化应激模型可改变断奶仔猪各器官组织微量元素含量,降低微量元素在仔猪体内的表观消化率。
中图分类号:
覃阳, 夏嗣廷, 何流琴, 王天丽, 刘宇炎, 姜肖翰, 刘智豪, 刘思危, 李铁军, 印遇龙. 慢性氧化应激对断奶仔猪器官组织微量元素含量的影响[J]. 畜牧兽医学报, 2025, 56(9): 4452-4460.
QIN Yang, XIA Siting, HE Liuqin, WANG Tianli, LIU Yuyan, JIANG Xiaohan, LIU Zhihao, LIU Siwei, LI Tiejun, YIN Yulong. Effect of Chronic Oxidative Stress on Trace Elements in Organ Tissues of Weaned Piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4452-4460.
表 1
基础饲粮成分及营养水平(风干基础)"
| 项目Item | 组成Composition |
| 原料Ingredient | |
| 膨化玉米Extruded maize | 32.00 |
| 玉米Corn | 31.99 |
| 豆粕Soybean meal | 14.40 |
| 膨化大豆Expanded soybean | 7.00 |
| 鱼粉Fish meal | 3.00 |
| 小麦麸Wheat bran | 3.00 |
| 蔗糖Sucrose | 2.00 |
| 葡萄糖Glucose | 1.00 |
| 磷酸氢钙CaHPO4 | 0.87 |
| 柠檬酸Citric acid | 0.80 |
| 豆油Bean oil | 0.72 |
| 赖氨酸盐酸盐Lysine hydrochloride | 0.60 |
| 预混料Premix1) | 0.50 |
| 石粉Limestone | 0.55 |
| 氯化钠NaCl | 0.40 |
| 氧化锌ZnO | 0.30 |
| 二氧化钛TiO2 | 0.30 |
| 蛋氨酸Methionine | 0.21 |
| 苏氨酸Threonine | 0.21 |
| 氯化胆碱Choline chloride | 0.10 |
| 色氨酸Tryptophan | 0.05 |
| 合计Total | 100.00 |
| 营养水平Nutritional level2) | |
| 消化能/(MJ·kg-1) DE | 14.43 |
| 粗蛋白质CP | 17.01 |
| 钙Ca | 1.29 |
| 总磷Total | 0.47 |
| 有效磷Available P | 0.31 |
| 赖氨酸Lys | 1.31 |
| 苏氨酸Thr | 0.83 |
| 蛋氨酸+半胱氨酸Met+Cys | 0.78 |
| 色氨酸Trp | 0.22 |
| 1 | HAO Y , XING M , GU X . Research progress on oxidative stress and its nutritional regulation strategies in pigs[J]. Animals (Basel), 2021, 11 (5): 1384. |
| 2 |
YIN J , WU M M , XIAO H , et al. Development of an antioxidant system after early weaning in piglets[J]. J Anim Sci, 2014, 92 (2): 612- 619.
doi: 10.2527/jas.2013-6986 |
| 3 |
WOLTER B F , ELLIS M , CORRIGAN B P , et al. Impact of early postweaning growth rate as affected by diet complexity and space allocation on subsequent growth performance of pigs in a wean-to-finish production system[J]. J Anim Sci, 2003, 81 (2): 353- 359.
doi: 10.2527/2003.812353x |
| 4 |
FORMAN H J , ZHANG H . Targeting oxidative stress in disease: promise and limitations of antioxidant therapy[J]. Nat Rev Drug Discov, 2021, 20 (9): 689- 709.
doi: 10.1038/s41573-021-00233-1 |
| 5 |
HAJAM Y A , RANI R , GANIE S Y , et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives[J]. Cells, 2022, 11 (3): 552.
doi: 10.3390/cells11030552 |
| 6 |
LI X , WANG C , ZHU J , et al. Sodium butyrate ameliorates oxidative stress-induced intestinal epithelium barrier injury and mitochondrial damage through AMPK-mitophagy pathway[J]. Oxid Med Cell Longev, 2022, 2022 (1): 3745135.
doi: 10.1155/2022/3745135 |
| 7 |
HAN H , LIU Z , YIN J , et al. D-galactose induces chronic oxidative stress and alters gut microbiota in weaned piglets[J]. Front Physiol, 2021, 12, 634283.
doi: 10.3389/fphys.2021.634283 |
| 8 |
ZHANG H , XIANG X , WANG C , et al. Different effects of acute and chronic oxidative stress on the intestinal flora and gut-liver axis in weaned piglets[J]. Front Microbiol, 2024, 15, 1414486.
doi: 10.3389/fmicb.2024.1414486 |
| 9 |
CUI X , WANG L , ZUO P , et al. D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress[J]. Biogerontology, 2004, 5 (5): 317- 325.
doi: 10.1007/s10522-004-2570-3 |
| 10 |
HAIDER S , LIAQUAT L , SHAHZAD S , et al. A high dose of short term exogenous D-galactose administration in young male rats produces symptoms simulating the natural aging process[J]. Life Sci, 2015, 124, 110- 119.
doi: 10.1016/j.lfs.2015.01.016 |
| 11 | 刘泽民, 何流琴, 李铁军, 等. 氧化应激对断奶仔猪能量代谢和氨基酸表观消化率的影响[J]. 湖南农业大学学报(自然科学版), 2022, 48 (2): 208- 214. |
| LIU Z M , HE L Q , LI T J , et al. Effects of oxidative stress on energy metabolism and apparent digestibility of amino acids of the weaned piglets[J]. Journal of Hunan Agricultural University(Natural Sciences), 2022, 48 (2): 208- 214. | |
| 12 | WOŁONCIEJ M , MILEWSKA E , ROSZKOWSKA-JAKIMIEC W . Trace elements as an activator of antioxidant enzymes[J]. Postepy Hig Med Dosw (Online), 2016, 70 (0): 1483- 1498. |
| 13 |
WROBLEWSKI M , WROBLEWSKA W , SOBIESIAK M . The role of selected elements in oxidative stress protection: Key to healthy fertility and reproduction[J]. Int J Mol Sci, 2024, 25 (17): 9409.
doi: 10.3390/ijms25179409 |
| 14 |
SAMAVARCHI TEHRANI S , MAHMOODZADEH HOSSEINI H , YOUSEFI T , et al. The crosstalk between trace elements with DNA damage response, repair, and oxidative stress in cancer[J]. J Cell Biochem, 2019, 120 (2): 1080- 1105.
doi: 10.1002/jcb.27617 |
| 15 | SHAZIA Q , MOHAMMAD Z H , RAHMAN T , et al. Correlation of oxidative stress with serum trace element levels and antioxidant enzyme status in Beta thalassemia major patients: a review of the literature[J]. Anemia, 2012, 2012, 270923. |
| 16 | LIU L , WU C M , CHEN D W , et al. Selenium-enriched yeast alleviates oxidative stress-induced intestinal mucosa disruption in weaned pigs[J]. Oxid Med Cell Longev, 2020, 2020, 5490743. |
| 17 |
KLOUBERT V , BLAABJERG K , DALGAARD T S , et al. Influence of zinc supplementation on immune parameters in weaned pigs[J]. J Trace Elem Med Biol, 2018, 49, 231- 240.
doi: 10.1016/j.jtemb.2018.01.006 |
| 18 |
ASIKAINEN T M , HEIKKILÄ P , KAARTEENAHO-WIIK R , et al. Cell-specific expression of manganese superoxide dismutase protein in the lungs of patients with respiratory distress syndrome, chronic lung disease, or persistent pulmonary hypertension[J]. Pediatr Pulmonol, 2001, 32 (3): 193- 200.
doi: 10.1002/ppul.1108 |
| 19 |
JIN S S , HE L Q , YANG C B , et al. Crosstalk between trace elements and T-cell immunity during early-life health in pigs[J]. Sci China Life Sci, 2023, 66 (9): 1994- 2005.
doi: 10.1007/s11427-022-2339-0 |
| 20 |
JOHNSON W T , DUFAULT S N . Copper deficiency alters protein kinase C mediation of thrombin-induced dense granule secretion from rat platelets[J]. J Nutr Biochem, 1991, 2 (12): 663- 670.
doi: 10.1016/0955-2863(91)90065-D |
| 21 |
MOHAMMAD M K , ZHOU Z , CAVE M , et al. Zinc and liver disease[J]. Nutr Clin Pract, 2012, 27 (1): 8- 20.
doi: 10.1177/0884533611433534 |
| 22 |
TOMAT A L , DE LOS ÁNGELES COSTA M , ARRANZ C T . Zinc restriction during different periods of life: influence in renal and cardiovascular diseases[J]. Nutrition, 2011, 27 (4): 392- 398.
doi: 10.1016/j.nut.2010.09.010 |
| 23 | MOSLEMI F , TALEBI A , NEMATBAKHSH M . Protective effect of zinc supplementation on renal ischemia/reperfusion injury in rat: Gender-related difference[J]. Int J Prev Med, 2019, 10, 68. |
| 24 |
MUSELIN F , GRBAN Z , CRISTINA R T , et al. Homeostatic changes of some trace elements in geriatric rats in the condition of oxidative stress induced by aluminum and the beneficial role of resveratrol[J]. J Trace Elem Med Biol, 2019, 55, 136- 142.
doi: 10.1016/j.jtemb.2019.06.013 |
| 25 |
ASADI S , MORADI M N , KHYRIPOUR N , et al. Resveratrol attenuates copper and zinc homeostasis and ameliorates oxidative stress in type 2 diabetic rats[J]. Biol Trace Elem Res, 2017, 177 (1): 132- 138.
doi: 10.1007/s12011-016-0861-6 |
| 26 |
APPLE J K , ROBERTS W J , MAXWELL C V , et al. Effect of supplemental manganese on performance and carcass characteristics of growing-finishing swine[J]. J Anim Sci, 2004, 82 (11): 3267- 3276.
doi: 10.2527/2004.82113267x |
| 27 |
SAHOO D K , HEILMANN R M , PAITAL B , et al. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease[J]. Front Endocrinol (Lausanne), 2023, 14, 1217165.
doi: 10.3389/fendo.2023.1217165 |
| 28 | CANDELLONE A , GIROLAMI F , BADINO P , et al. Changes in the oxidative stress status of dogs affected by acute enteropathies[J]. Vet Sci, 2022, 9 (6): 276. |
| 29 |
LALLōS J P , BOUDRY G , FAVIER C , et al. Gut function and dysfunction in young pigs: physiology[J]. Anim Res, 2004, 53 (4): 301- 316.
doi: 10.1051/animres:2004018 |
| 30 | UPADHAYA S D , KIM I H . The impact of weaning stress on gut health and the mechanistic aspects of several feed additives contributing to improved gut health function in weanling piglets—A review[J]. Animals (Basel), 2021, 11 (8): 2418. |
| 31 |
GRESSE R , CHAUCHEYRAS-DURAND F , FLEURY M A , et al. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health[J]. Trends Microbiol, 2017, 25 (10): 851- 873.
doi: 10.1016/j.tim.2017.05.004 |
| 32 | RAO R . Oxidative stress-induced disruption of epithelial and endothelial tight junctions[J]. Front Biosci, 2008, 13, 7210- 7226. |
| 33 |
CHEN X Y , ZHANG X F , ZHAO J , et al. Split iron supplementation is beneficial for newborn piglets[J]. Biomed Pharmacother, 2019, 120, 109479.
doi: 10.1016/j.biopha.2019.109479 |
| 34 |
HU P , ZHAO F Z , ZHU W Y , et al. Effects of early-life lactoferrin intervention on growth performance, small intestinal function and gut microbiota in suckling piglets[J]. Food Funct, 2019, 10 (9): 5361- 5373.
doi: 10.1039/C9FO00676A |
| 35 |
BAO H H , WANG Y , XIONG H L , et al. Mechanism of iron ion homeostasis in intestinal immunity and gut microbiota remodeling[J]. Int J Mol Sci, 2024, 25 (2): 727.
doi: 10.3390/ijms25020727 |
| 36 |
GUO J P , HE L Q , LI T J , et al. Antioxidant and anti-inflammatory effects of different zinc sources on Diquat-induced oxidant stress in a piglet model[J]. Biomed Res Int, 2020, 2020, 3464068.
doi: 10.1155/2020/3464068 |
| 37 |
KATTURAJAN R , PRINCE S E . L-carnitine and zinc supplementation impedes intestinal damage in methotrexate-treated adjuvant-induced arthritis rats: Reinstating enterocyte proliferation and trace elements[J]. J Trace Elem Med Biol, 2023, 78, 127188.
doi: 10.1016/j.jtemb.2023.127188 |
| 38 |
WANG S C , WU S J , ZHANG Y W , et al. Effects of different levels of organic trace minerals on oxidative status and intestinal function in weanling piglets[J]. Biol Trace Elem Res, 2023, 201 (2): 720- 727.
doi: 10.1007/s12011-022-03174-x |
| 39 | HOTZ C , LOWE N M , ARAYA M , et al. Assessment of the trace element status of individuals and populations: the example of zinc and copper[J]. J Nutr, 2003, 133 (5 Suppl 1): 1563S- 1568S. |
| 40 |
PAJARILLO E A B , LEE E , KANG D K . Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper[J]. Anim Nutr, 2021, 7 (3): 750- 761.
doi: 10.1016/j.aninu.2021.03.005 |
| 41 |
HANSEN S L , TRAKOOLJUL N , LIU H C , et al. Iron transporters are differentially regulated by dietary iron, and modifications are associated with changes in manganese metabolism in young pigs[J]. J Nutr, 2009, 139 (8): 1474- 1479.
doi: 10.3945/jn.109.105866 |
| 42 |
ZHONG L , DONG A J , FENG Y , et al. Alteration of metal elements in radiation injury: Radiation-induced copper accumulation aggravates intestinal damage[J]. Dose Response, 2020, 18 (1): 1559325820904547.
doi: 10.1177/1559325820904547 |
| 43 |
CHEN X L , LIU H , LIU S P , et al. Excessive dietary iron exposure increases the susceptibility of largemouth bass (Micropterus salmoides) to Aeromonas hydrophila by interfering with immune response, oxidative stress, and intestinal homeostasis[J]. Fish Shellfish Immunol, 2024, 147, 109430.
doi: 10.1016/j.fsi.2024.109430 |
| 44 |
ZHONG W , MCCLAIN C J , CAVE M , et al. The role of zinc deficiency in alcohol-induced intestinal barrier dysfunction[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 298 (5): G625- G633.
doi: 10.1152/ajpgi.00350.2009 |
| 45 |
AL-AWADI F M , KHAN I , DASHTI H M , et al. Colitis-induced changes in the level of trace elements in rat colon and other tissues[J]. Ann Nutr Metab, 1998, 42 (5): 304- 310.
doi: 10.1159/000012748 |
| 46 |
XIONG X , YANG H S , WANG X C , et al. Effect of low dosage of chito-oligosaccharide supplementation on intestinal morphology, immune response, antioxidant capacity, and barrier function in weaned piglets[J]. J Anim Sci, 2015, 93 (3): 1089- 1097.
doi: 10.2527/jas.2014-7851 |
| 47 |
DUARTE M E , ZHOU F X , DUTRA Jr W M , et al. Dietary supplementation of xylanase and protease on growth performance, digesta viscosity, nutrient digestibility, immune and oxidative stress status, and gut health of newly weaned pigs[J]. Anim Nutr, 2019, 5 (4): 351- 358.
doi: 10.1016/j.aninu.2019.04.005 |
| 48 |
DIXIT P , JAIN D K , RAJPOOT J S . Differential effect of oxidative stress on intestinal apparent permeability of drugs transported by paracellular and transcellular route[J]. Eur J Drug Metab Pharmacokinet, 2012, 37 (3): 203- 209.
doi: 10.1007/s13318-012-0099-4 |
| 49 |
ZHENG D P , LIWINSKI T , ELINAV E . Interaction between microbiota and immunity in health and disease[J]. Cell Res, 2020, 30 (6): 492- 506.
doi: 10.1038/s41422-020-0332-7 |
| 50 |
DABKE K , HENDRICK G , DEVKOTA S . The gut microbiome and metabolic syndrome[J]. J Clin Invest, 2019, 129 (10): 4050- 4057.
doi: 10.1172/JCI129194 |
| 51 |
COLLINS J , BOROJEVIC R , VERDU E F , et al. Intestinal microbiota influence the early postnatal development of the enteric nervous system[J]. Neurogastroenterol Motil, 2014, 26 (1): 98- 107.
doi: 10.1111/nmo.12236 |
| 52 |
DAVID L A , MAURICE C F , CARMODY R N , et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505 (7484): 559- 563.
doi: 10.1038/nature12820 |
| 53 |
VILA A V , COLLIJ V , SANNA S , et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota[J]. Nat Commun, 2020, 11 (1): 362.
doi: 10.1038/s41467-019-14177-z |
| 54 | DE LA CUESTA-ZULUAG J , KELLEY S T , CHEN Y F , et al. Age-and sex-dependent patterns of gut microbial diversity in human adults[J]. mSystems, 2019, 4 (4): e00261- 19. |
| 55 | FASANO A . All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases[J]. F1000Res, 2020, 9, F1000 Faculty Rev- 69. |
| 56 |
HUIZINGA J D , LAMMERS W J E P . Gut peristalsis is governed by a multitude of cooperating mechanisms[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296 (1): G1- G8.
doi: 10.1152/ajpgi.90380.2008 |
| 57 |
QIAO Y , SUN J , DING Y Y , et al. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress[J]. Appl Microbiol Biotechnol, 2013, 97 (4): 1689- 1697.
doi: 10.1007/s00253-012-4323-6 |
| 58 | GHAREEB A F A , SCHNEIDERS G H , FOUTZ J C , et al. Heat stress alters the effect of Eimeria maxima infection on ileal amino acids digestibility and transporters expression in meat-type chickens[J]. Animals (Basel), 2022, 12 (12): 1554. |
| 59 |
WANG Z , YIN L , LIU L , et al. Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of Xiangdong black goats[J]. Front Vet Sci, 2022, 9, 1004841.
doi: 10.3389/fvets.2022.1004841 |
| [1] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氨基葡萄糖对断奶仔猪血清抗氧化、炎症指标以及肠道微生物的影响[J]. 畜牧兽医学报, 2025, 56(8): 3908-3921. |
| [2] | 周文涛, 王晨昱, 周辉, 刘洪彪, 冯舒锾, 范高升, 李铁军, 何流琴. 单宁酸对免疫应激断奶仔猪肌肉形态、风味氨基酸及肌纤维相关基因表达的影响[J]. 畜牧兽医学报, 2025, 56(3): 1290-1301. |
| [3] | 白国松, 滕春然, 王俊洪, 钟儒清, 马腾, 陈亮, 张宏福. 酶解玉米蛋白粉替代鱼粉和豆粕对断奶仔猪生长性能和肠道健康的影响[J]. 畜牧兽医学报, 2025, 56(2): 953-968. |
| [4] | 范定坤, 张涛, 焦帅, 陆伟, 付域泽, 杨宏, 屠焰, 石玲元, 张乃锋. 基于斜率比法评价断奶仔猪对高温烧结法磷酸三钙的相对生物学利用率[J]. 畜牧兽医学报, 2025, 56(1): 269-280. |
| [5] | 刘彬, 刘彦, 郑琛, 冯涛. 氨基葡萄糖对断奶仔猪生长性能、抗氧化能力及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55(7): 3246-3254. |
| [6] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
| [7] | 王海波, 占今舜, 谷志勇, 陈新锋, 潘月, 贾浩滨, 钟小军, 李开嵘, 赵生国, 霍俊宏. 湖羊与三元杂交绵羊夏杜湖、夏澳湖肉质特性比较研究[J]. 畜牧兽医学报, 2024, 55(1): 110-119. |
| [8] | 纪鹏, 张斌, 张春勇, 邢笑锟, 杨佳, 刘韶娜, 方碟, 潘洪彬, 赵彦光, 安清聪. 日粮添加乳铁蛋白对断奶仔猪肠道微生物多样性的影响[J]. 畜牧兽医学报, 2023, 54(7): 2942-2955. |
| [9] | 郭大伟, 侯思鲁, 池宇佳, 于非可, 尉啸涵, 邓倩, 肖传明, 刘晓晔, 董虹. 芪英汤和子甘汤中药复方促进母猪繁殖性能和断奶仔猪生长性能的临床研究[J]. 畜牧兽医学报, 2022, 53(6): 1994-2004. |
| [10] | 张鹏光, 闫恩法, 王黎琦, 马成宏, 张鑫, 尹靖东. L-苹果酸对断奶仔猪炎症反应和肠道健康的影响[J]. 畜牧兽医学报, 2022, 53(12): 4306-4314. |
| [11] | 贾红敏, 马永航, 贺平丽, 谯仕彦. 过量赖氨酸对断奶仔猪及其肠道上皮细胞的影响[J]. 畜牧兽医学报, 2021, 52(7): 1912-1926. |
| [12] | 贾沛璐, 张昊, 陈亚楠, 季书立, 王恬. 白皮杉醇对氧化应激断奶仔猪空肠抗氧化能力、黏膜形态和屏障功能的影响[J]. 畜牧兽医学报, 2021, 52(6): 1616-1624. |
| [13] | 谢彦娇, 刘真, 陈磊, 苗启翔, 张宏福, 唐湘方. 硫化氢暴露不同时长对断奶仔猪生长性能、血液指标及组织病理学的影响[J]. 畜牧兽医学报, 2021, 52(6): 1625-1639. |
| [14] | 方晨, 郭飞, 胡瑞举, 杨明华, 张斌, 刘韶娜, 黄英, 赵彦光, 赵素梅. 杂交组合断奶仔猪腹泻与FUT1基因遗传变异的关联分析[J]. 畜牧兽医学报, 2021, 52(3): 610-619. |
| [15] | 乔新月, 王梦竹, 贾军峰, 孙晓燕, 李金库, 崔一喆, 王秋菊. 功能性氨基酸对断奶仔猪肠道损伤修复机制的研究进展[J]. 畜牧兽医学报, 2020, 51(7): 1499-1505. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||