[1] HAO Y, XING M, GU X. Research progress on oxidative stress and its nutritional regulation strategies in pigs[J]. Animals (Basel), 2021,11(5):1384. [2] YIN J, WU M M, XIAO H, et al. Development of an antioxidant system after early weaning in piglets[J]. J Anim Sci, 2014,92(2):612-619. [3] WOLTER B F, ELLIS M, CORRIGAN B P, et al. Impact of early postweaning growth rate as affected by diet complexity and space allocation on subsequent growth performance of pigs in a wean-to-finish production system[J]. J Anim Sci, 2003,81(2):353-359. [4] FORMAN H J, ZHANG H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy[J]. Nat Rev Drug Discov, 2021,20(9):689-709. [5] HAJAM Y A, RANI R, GANIE S Y, et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives[J]. Cells, 2022,11(3):552. [6] LI X, WANG C, ZHU J, et al. Sodium butyrate ameliorates oxidative stress-induced intestinal epithelium barrier injury and mitochondrial damage through AMPK-mitophagy pathway[J]. Oxid Med Cell Longev, 2022,2022(1):3745135. [7] HAN H, LIU Z, YIN J, et al. D-galactose induces chronic oxidative stress and alters gut microbiota in weaned piglets[J]. Front Physiol, 2021,12:634283. [8] ZHANG H, XIANG X, WANG C, et al. Different effects of acute and chronic oxidative stress on the intestinal flora and gut-liver axis in weaned piglets[J]. Front Microbiol, 2024,15:1414486. [9] CUI X, WANG L, ZUO P, et al. D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress[J]. Biogerontology, 2004,5(5):317-325. [10] HAIDER S, LIAQUAT L, SHAHZAD S, et al. A high dose of short term exogenous D-galactose administration in young male rats produces symptoms simulating the natural aging process[J]. Life Sci, 2015,124:110-119. [11] 刘泽民, 何流琴, 李铁军, 等. 氧化应激对断奶仔猪能量代谢和氨基酸表观消化率的影响[J]. 湖南农业大学学报(自然科学版), 2022,48(2):208-214. LIU Z M, HE L Q, LI T J, et al. Effects of oxidative stress on energy metabolism and apparent digestibility of amino acids of the weaned piglets[J]. Journal of Hunan Agricultural University(Natural Sciences), 2022,48(2):208-214.(in Chinese) [12] WOŁONCIEJ M, MILEWSKA E, ROSZKOWSKA-JAKIMIEC W. Trace elements as an activator of antioxidant enzymes[J]. Postepy Hig Med Dosw (Online), 2016,70(0):1483-1498. [13] WROBLEWSKI M, WROBLEWSKA W, SOBIESIAK M. The role of selected elements in oxidative stress protection: Key to healthy fertility and reproduction[J]. Int J Mol Sci, 2024,25(17):9409. [14] SAMAVARCHI TEHRANI S, MAHMOODZADEH HOSSEINI H, YOUSEFI T, et al. The crosstalk between trace elements with DNA damage response, repair, and oxidative stress in cancer[J]. J Cell Biochem, 2019,120(2):1080-1105. [15] SHAZIA Q, MOHAMMAD Z H, RAHMAN T, et al. Correlation of oxidative stress with serum trace element levels and antioxidant enzyme status in Beta thalassemia major patients: a review of the literature[J]. Anemia, 2012,2012:270923. [16] LIU L, WU C M, CHEN D W, et al. Selenium-enriched yeast alleviates oxidative stress-induced intestinal mucosa disruption in weaned pigs[J]. Oxid Med Cell Longev, 2020,2020:5490743. [17] KLOUBERT V, BLAABJERG K, DALGAARD T S, et al. Influence of zinc supplementation on immune parameters in weaned pigs[J]. J Trace Elem Med Biol, 2018,49:231-240. [18] ASIKAINEN T M, HEIKKILÄ P, KAARTEENAHO-WIIK R, et al. Cell-specific expression of manganese superoxide dismutase protein in the lungs of patients with respiratory distress syndrome, chronic lung disease, or persistent pulmonary hypertension[J]. Pediatr Pulmonol, 2001,32(3):193-200. [19] JIN S S, HE L Q, YANG C B, et al. Crosstalk between trace elements and T-cell immunity during early-life health in pigs[J]. Sci China Life Sci, 2023,66(9):1994-2005. [20] JOHNSON W T, DUFAULT S N. Copper deficiency alters protein kinase C mediation of thrombin-induced dense granule secretion from rat platelets[J]. J Nutr Biochem, 1991,2(12):663-670. [21] MOHAMMAD M K, ZHOU Z, CAVE M, et al. Zinc and liver disease[J]. Nutr Clin Pract, 2012,27(1):8-20. [22] TOMAT A L, DE LOS ÁNGELES COSTA M, ARRANZ C T. Zinc restriction during different periods of life: influence in renal and cardiovascular diseases[J]. Nutrition, 2011,27(4):392-398. [23] MOSLEMI F, TALEBI A, NEMATBAKHSH M. Protective effect of zinc supplementation on renal ischemia/reperfusion injury in rat: Gender-related difference[J]. Int J Prev Med, 2019,10:68. [24] MUSELIN F, GRBAN Z, CRISTINA R T, et al. Homeostatic changes of some trace elements in geriatric rats in the condition of oxidative stress induced by aluminum and the beneficial role of resveratrol[J]. J Trace Elem Med Biol, 2019,55:136-142. [25] ASADI S, MORADI M N, KHYRIPOUR N, et al. Resveratrol attenuates copper and zinc homeostasis and ameliorates oxidative stress in type 2 diabetic rats[J]. Biol Trace Elem Res, 2017,177(1):132-138. [26] APPLE J K, ROBERTS W J, MAXWELL C V, et al. Effect of supplemental manganese on performance and carcass characteristics of growing-finishing swine[J]. J Anim Sci, 2004,82(11):3267-3276. [27] SAHOO D K, HEILMANN R M, PAITAL B, et al. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease[J]. Front Endocrinol (Lausanne), 2023,14:1217165. [28] CANDELLONE A, GIROLAMI F, BADINO P, et al. Changes in the oxidative stress status of dogs affected by acute enteropathies[J]. Vet Sci, 2022,9(6):276. [29] LALLōS J P, BOUDRY G, FAVIER C, et al. Gut function and dysfunction in young pigs: physiology[J]. Anim Res, 2004, 53(4): 301-316. [30] UPADHAYA S D, KIM I H. The impact of weaning stress on gut health and the mechanistic aspects of several feed additives contributing to improved gut health function in weanling piglets—A review[J]. Animals (Basel), 2021, 11(8): 2418. [31] GRESSE R, CHAUCHEYRAS-DURAND F, FLEURY M A, et al. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health[J]. Trends Microbiol, 2017,25(10):851-873. [32] RAO R. Oxidative stress-induced disruption of epithelial and endothelial tight junctions[J]. Front Biosci, 2008,13:7210-7226. [33] CHEN X Y, ZHANG X F, ZHAO J, et al. Split iron supplementation is beneficial for newborn piglets[J]. Biomed Pharmacother, 2019,120:109479. [34] HU P, ZHAO F Z, ZHU W Y, et al. Effects of early-life lactoferrin intervention on growth performance, small intestinal function and gut microbiota in suckling piglets[J]. Food Funct, 2019,10(9):5361-5373. [35] BAO H H, WANG Y, XIONG H L, et al. Mechanism of iron ion homeostasis in intestinal immunity and gut microbiota remodeling[J]. Int J Mol Sci, 2024,25(2):727. [36] GUO J P, HE L Q, LI T J, et al. Antioxidant and anti-inflammatory effects of different zinc sources on Diquat-induced oxidant stress in a piglet model[J]. Biomed Res Int, 2020,2020:3464068. [37] KATTURAJAN R, PRINCE S E. L-carnitine and zinc supplementation impedes intestinal damage in methotrexate-treated adjuvant-induced arthritis rats: Reinstating enterocyte proliferation and trace elements[J].J Trace Elem Med Biol, 2023,78:127188. [38] WANG S C, WU S J, ZHANG Y W, et al. Effects of different levels of organic trace minerals on oxidative status and intestinal function in weanling piglets[J]. Biol Trace Elem Res, 2023,201(2):720-727. [39] HOTZ C, LOWE N M, ARAYA M, et al. Assessment of the trace element status of individuals and populations: the example of zinc and copper[J]. J Nutr, 2003,133(5 Suppl 1):1563S-1568S. [40] PAJARILLO E A B, LEE E, KANG D K. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper[J]. Anim Nutr, 2021,7(3):750-761. [41] HANSEN S L, TRAKOOLJUL N, LIU H C, et al. Iron transporters are differentially regulated by dietary iron, and modifications are associated with changes in manganese metabolism in young pigs[J]. J Nutr, 2009,139(8):1474-1479. [42] ZHONG L, DONG A J, FENG Y, et al. Alteration of metal elements in radiation injury: Radiation-induced copper accumulation aggravates intestinal damage[J]. Dose Response. 2020,18(1):1559325820904547. [43] CHEN X L, LIU H, LIU S P, et al. Excessive dietary iron exposure increases the susceptibility of largemouth bass (Micropterus salmoides) to Aeromonas hydrophila by interfering with immune response, oxidative stress, and intestinal homeostasis[J]. Fish Shellfish Immunol, 2024,147:109430. [44] ZHONG W, MCCLAIN C J, CAVE M, et al. The role of zinc deficiency in alcohol-induced intestinal barrier dysfunction[J]. Am J Physiol Gastrointest Liver Physiol, 2010,298(5):G625-G633. [45] AL-AWADI F M, KHAN I, DASHTI H M, et al. Colitis-induced changes in the level of trace elements in rat colon and other tissues[J]. Ann Nutr Metab, 1998,42(5):304-310. [46] XIONG X, YANG H S, WANG X C, et al. Effect of low dosage of chito-oligosaccharide supplementation on intestinal morphology, immune response, antioxidant capacity, and barrier function in weaned piglets[J]. J Anim Sci, 2015,93(3):1089-1097. [47] DUARTE M E, ZHOU F X, DUTRA Jr W M, et al. Dietary supplementation of xylanase and protease on growth performance, digesta viscosity, nutrient digestibility, immune and oxidative stress status, and gut health of newly weaned pigs[J]. Anim Nutr, 2019,5(4):351-358. [48] DIXIT P, JAIN D K, RAJPOOT J S. Differential effect of oxidative stress on intestinal apparent permeability of drugs transported by paracellular and transcellular route[J]. Eur J Drug Metab Pharmacokinet, 2012,37(3):203-209. [49] ZHENG D P, LIWINSKI T, ELINAV E. Interaction between microbiota and immunity in health and disease[J]. Cell Res, 2020,30(6):492-506. [50] DABKE K, HENDRICK G, DEVKOTA S. The gut microbiome and metabolic syndrome[J]. J Clin Invest, 2019,129(10):4050-4057. [51] COLLINS J, BOROJEVIC R, VERDU E F, et al. Intestinal microbiota influence the early postnatal development of the enteric nervous system[J]. Neurogastroenterol Motil, 2014,26(1):98-107. [52] DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014,505(7484):559-563. [53] VILA A V, COLLIJ V, SANNA S, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota[J]. Nat Commun, 2020,11(1):362. [54] DE LA CUESTA-ZULUAG J, KELLEY S T, CHEN Y F, et al. Age-and sex-dependent patterns of gut microbial diversity in human adults[J]. mSystems, 2019,4(4):e00261-19. [55] FASANO A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases[J]. F1000Res, 2020,9:F1000 Faculty Rev-69. [56] HUIZINGA J D, LAMMERS W J E P. Gut peristalsis is governed by a multitude of cooperating mechanisms[J]. Am J Physiol Gastrointest Liver Physiol, 2009,296(1):G1-G8. [57] QIAO Y, SUN J, DING Y Y, et al. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress[J]. Appl Microbiol Biotechnol, 2013,97(4):1689-1697. [58] GHAREEB A F A, SCHNEIDERS G H, FOUTZ J C, et al. Heat stress alters the effect of Eimeria maxima infection on ileal amino acids digestibility and transporters expression in meat-type chickens[J]. Animals (Basel), 2022,12(12):1554. [59] WANG Z, YIN L, LIU L, et al. Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of Xiangdong black goats[J]. Front Vet Sci, 2022,9:1004841. |