畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (6): 2733-2740.doi: 10.11843/j.issn.0366-6964.2025.06.018
武建亮1(), 苏洋2(
), 毛瑞涵2, 周磊2, 闫田田1, 李智1, 刘剑锋2,*(
)
收稿日期:
2025-01-15
出版日期:
2025-06-23
发布日期:
2025-06-25
通讯作者:
刘剑锋
E-mail:wwwjl1617@163.com;s20233040750@cau.edu.cn;liujf@cau.edu.cn
作者简介:
武建亮(1979-),男,山西文水人,博士,主要从事种猪育种、生产与管理工作,E-mail: wwwjl1617@163.com武建亮和苏洋为同等贡献作者
基金资助:
WU Jianliang1(), SU Yang2(
), MAO Ruihan2, ZHOU Lei2, YAN Tiantian1, LI Zhi1, LIU Jianfeng2,*(
)
Received:
2025-01-15
Online:
2025-06-23
Published:
2025-06-25
Contact:
LIU Jianfeng
E-mail:wwwjl1617@163.com;s20233040750@cau.edu.cn;liujf@cau.edu.cn
摘要:
旨在探究低密度SNP芯片在猪育种中的应用效果,尤其是在基因型填充和育种值估计准确性方面的表现。本研究在中高密度SNP芯片“中芯一号”的基础上设计了一款密度为5K的低密度SNP芯片,可用于检测种猪遗传标记分型,并填充至质控后的“中芯一号”的面板上,最终应用于基因组选择。随后本研究使用来自某种猪育种场的3 239头纯种大白猪数据,通过五折交叉验证方法探究该低密度芯片的基因型填充准确性和填充后数据的基因组育种值估计准确性。结果表明,基因型填充的等位基因正确率达到了99.46%,达100 kg校正日龄和达100 kg背膘厚的遗传评估准确性均值分别达到了0.374 2和0.402 1,与原始基因型数据相比,准确性损失仅为0.001 5和0.001 2。结果提示,低密度SNP芯片在降低检测成本的同时,保留了绝大部分原始信息。本研究为畜禽全基因组低密度芯片的设计提供了依据和参考,这种策略大幅降低了基因型检测的成本,促进了我国猪全基因选择的普及。
中图分类号:
武建亮, 苏洋, 毛瑞涵, 周磊, 闫田田, 李智, 刘剑锋. 猪全基因组低密度SNP芯片的设计与效果评价[J]. 畜牧兽医学报, 2025, 56(6): 2733-2740.
WU Jianliang, SU Yang, MAO Ruihan, ZHOU Lei, YAN Tiantian, LI Zhi, LIU Jianfeng. Design and Effect Evaluation of A Whole-Genome Low-Density SNP Chip in Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2733-2740.
表 2
低密度芯片和质控后的高密度芯片位点各染色体上的MAF统计"
染色体号 Chromosome number | 位点数量 Number of loci | 位点平均MAF Average MAF of loci | 位点平均LD Average LD of loci | |||||
50K | 5K | 50K | 5K | 50K | 5K | |||
1 | 5 474 | 664 | 0.265 7 | 0.319 0 | 0.608 1 | 0.556 2 | ||
2 | 2 989 | 357 | 0.262 1 | 0.319 1 | 0.576 1 | 0.522 4 | ||
3 | 2 633 | 320 | 0.247 2 | 0.306 1 | 0.575 7 | 0.439 1 | ||
4 | 2 485 | 314 | 0.259 9 | 0.319 7 | 0.589 0 | 0.506 5 | ||
5 | 1 922 | 244 | 0.254 8 | 0.316 5 | 0.579 0 | 0.442 5 | ||
6 | 2 897 | 402 | 0.273 5 | 0.307 9 | 0.606 6 | 0.489 2 | ||
7 | 2 464 | 291 | 0.261 7 | 0.309 0 | 0.548 0 | 0.452 1 | ||
8 | 2 834 | 329 | 0.269 6 | 0.320 4 | 0.574 6 | 0.488 7 | ||
9 | 2 913 | 328 | 0.272 9 | 0.318 8 | 0.570 4 | 0.492 5 | ||
10 | 1 387 | 158 | 0.264 5 | 0.305 4 | 0.541 0 | 0.408 3 | ||
11 | 1 557 | 190 | 0.269 9 | 0.316 4 | 0.567 9 | 0.427 6 | ||
12 | 1 207 | 146 | 0.279 8 | 0.324 4 | 0.529 9 | 0.464 7 | ||
13 | 4 122 | 505 | 0.303 1 | 0.331 8 | 0.628 6 | 0.521 4 | ||
14 | 2 854 | 338 | 0.271 4 | 0.309 9 | 0.612 7 | 0.496 0 | ||
15 | 2 823 | 335 | 0.258 3 | 0.312 6 | 0.579 8 | 0.452 7 | ||
16 | 1 635 | 188 | 0.256 8 | 0.311 7 | 0.550 6 | 0.476 0 | ||
17 | 1 254 | 148 | 0.265 0 | 0.307 0 | 0.522 3 | 0.456 0 | ||
18 | 1 056 | 128 | 0.246 3 | 0.316 4 | 0.521 3 | 0.422 7 | ||
平均Mean | -- | -- | 0.265 7 | 0.315 1 | 0.571 2 | 0.473 0 |
表 3
原始和填充后的基因型育种值评估准确性和无偏性(平均值±标准差)"
基因组信息来源 Genomic information source | 准确性Accuracy | 无偏性Unbiasedness | |||
达100 kg日龄 Age adjusted to 100 kg weight | 达100 kg背膘厚 Back-fat thickness adjusted to 100 kg weight | 达100 kg日龄 Age adjusted to 100 kg weight | 达100 kg背膘厚 Back-fat thickness adjusted to 100 kg weight | ||
原始基因型 Raw genotype | 0.375 7±0.036 7 | 0.403 3±0.032 5 | 0.788 8±0.123 3 | 0.961 5±0.117 5 | |
填充后基因型 Imputed genotype | 0.374 2±0.036 7 | 0.402 1±0.033 5 | 0.786 3±0.124 7 | 0.961 5±0.120 9 |
1 |
MEUWISSEN T H , HAYES B J , GODDARD M E . Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157 (4): 1819- 1829.
doi: 10.1093/genetics/157.4.1819 |
2 |
VAN EENENNAAM A L , WEIGEL K A , YOUNG A E , et al. Applied animal genomics: results from the field[J]. Annu Rev Anim Biosci, 2014, 2, 105- 139.
doi: 10.1146/annurev-animal-022513-114119 |
3 |
严晓春, 习海娇, 李金泉, 等. 内蒙古绒山羊绒毛性状基因组育种值估计准确性研究[J]. 畜牧兽医学报, 2024, 55 (1): 120- 128.
doi: 10.11843/j.issn.0366-6964.2024.01.013 |
YAN X C , XI H J , LI J Q , et al. Study on estimates of genomic breeding value of fleece traits in Inner Mongolia cashmere goats[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (1): 120- 128.
doi: 10.11843/j.issn.0366-6964.2024.01.013 |
|
4 | 张瑞锋, 黄珍, 谢水华, 等. 猪全基因组选择技术发展现状和应用前景[J]. 中国畜牧杂志, 2023, 59 (10): 21- 29. |
ZHANG R F , HUANG Z , XIE S H , et al. Genomic selection in swine: current advances and future applications[J]. Chinese Journal of Animal Science, 2023, 59 (10): 21- 29. | |
5 |
孙东晓, 张胜利, 张勤, 等. 我国奶牛基因组选择技术应用进展[J]. 畜牧兽医学报, 2023, 54 (10): 4028- 4039.
doi: 10.11843/j.issn.0366-6964.2023.10.003 |
SUN D X , ZHANG S L , ZHANG Q , et al. Application progress on genomic selection technology for dairy cattle in China[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (10): 4028- 4039.
doi: 10.11843/j.issn.0366-6964.2023.10.003 |
|
6 | 洪渊, 阳文攀, 陈梦会, 等. 基于SNP芯片猪早期选留的基因型填充效果研究[J]. 中国畜牧杂志, 2024, 60 (8): 300- 303. |
HONG Y , YANG W P , CHEN M H , et al. genotype imputation effectiveness evaluation for early-stage swine selection using a snp chip[J]. Chinese Journal of Animal Science, 2024, 60 (8): 300- 303. | |
7 |
QU S , LU S , LIU Y , et al. Accurate genomic selection using low-density SNP panels preselected by maximum likelihood estimation[J]. Aquaculture, 2024, 579, 9.
doi: 10.3969/j.issn.1004-2091.2024.11.002 |
8 |
CLOUARD C , NETTELBLAD C . Genotyping of SNPs in bread wheat at reduced cost from pooled experiments and imputation[J]. Theor Appl Genet, 2024, 137 (1): 26.
doi: 10.1007/s00122-023-04533-5 |
9 |
AHMAD S F , SINGH A , DEB C K , et al. Evaluation of imputation possibility from low-density SNP panel in composite Vrindavani cattle[J]. Anim Genet, 2023, 54 (5): 647- 648.
doi: 10.1111/age.13339 |
10 | ZHAO J , KE Q , MIAO L , et al. Revealing the interaction effect on the accuracy of genomic selection between marker density and genetic architecture[J]. Aquaculture, 2023, 563, 8. |
11 |
GROSSI D A , BRITO L F , JAFARIKIA M , et al. Genotype imputation from various low-density SNP panels and its impact on accuracy of genomic breeding values in pigs[J]. Animal, 2018, 12 (11): 2235- 2245.
doi: 10.1017/S175173111800085X |
12 |
WELLMANN R , PREUSS S , THOLEN E , et al. Genomic selection using low density marker panels with application to a sire line in pigs[J]. Genet Sel Evol, 2013, 45 (1): 28.
doi: 10.1186/1297-9686-45-28 |
13 |
SUN J , WEI J , PAN Y , et al. Improving genomic prediction accuracy of pig reproductive traits based on genotype imputation using preselected markers with different imputation platforms[J]. Animal, 2025, 19 (1): 101387.
doi: 10.1016/j.animal.2024.101387 |
14 |
吴俊锋, 闫奕源, 杨宁, 等. 蛋鸡SNP芯片10K到50K基因型填充的准确性研究[J]. 畜牧兽医学报, 2024, 55 (10): 4325- 4333.
doi: 10.11843/j.issn.0366-6964.2024.10.008 |
WU J F , YAN Y Y , YANG N , et al. Accuracy analysis of genotype imputation from 10K to 50K SNP loci in layers[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (10): 4325- 4333.
doi: 10.11843/j.issn.0366-6964.2024.10.008 |
|
15 | 程明, 孙军昌, 曹欣欣, 等. 奶山羊低密度液相SNP芯片开发及有效性验证[J]. 中国畜牧杂志, 2024, 60 (1): 229- 234. |
CHENG M , SUN J C , CAO X X , et al. Development and validation of a low-density liquid-phase snp chip for dairy goats[J]. Chinese Journal of Animal Science, 2024, 60 (1): 229- 234. | |
16 |
WANG H , WU H , ZHANG W , et al. Development and validation of a 5K low-density SNP chip for Hainan cattle[J]. BMC Genomics, 2024, 25 (1): 873.
doi: 10.1186/s12864-024-10753-w |
17 | GARCIA-RUIZ A , COLE J B , VANRADEN P M , et al. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection[J]. Proc Natl Acad Sci U S A, 2016, 113 (28): E3995- E4004. |
18 |
JUDGE M M , KEARNEY J F , MCCLURE M C , et al. Evaluation of developed low-density genotype panels for imputation to higher density in independent dairy and beef cattle populations[J]. J Anim Sci, 2016, 94 (3): 949- 962.
doi: 10.2527/jas.2015-0044 |
19 |
WU X , XU J , FENG G , et al. Optimal design of low-density snp arrays for genomic prediction: Algorithm and applications[J]. PLoS One, 2016, 11 (9): e0161719.
doi: 10.1371/journal.pone.0161719 |
20 | 张镜宇, 王银娟, 滕军, 等. 荷斯坦牛胚胎基因分型策略和基因组选择性能评估[J]. 中国畜牧杂志, 2024, 61 (3): 91- 99. |
ZHANG J Y , WANG Y J , TENG J , et al. Genotyping strategies and genomic selection performance evaluation in holstein cattle embryos[J]. Chinese Journal of Animal Science, 2024, 61 (3): 91- 99. | |
21 |
SHASHKOVA T I , MARTYNOVA E U , AYUPOVA A F , et al. Development of a low-density panel for genomic selection of pigs in Russia[J]. Transl Anim Sci, 2020, 4 (1): 264- 274.
doi: 10.1093/tas/txz182 |
22 | ZHANG T , XU Q , ZHOU B , et al. Development and validation of a 5K liquid chip for identifying cashmere goat populations in Inner Mongolia Autonomous Region[J]. Animals, 2024, 14 (24): 11. |
23 |
O'BRIEN A C , JUDGE M M , FAIR S , et al. High imputation accuracy from informative low-to-medium density single nucleotide polymorphism genotypes is achievable in sheep1[J]. J Anim Sci, 2019, 97 (4): 1550- 1567.
doi: 10.1093/jas/skz043 |
24 |
RAOUL J , SWAN A A , ELSEN J . Using a very low-density SNP panel for genomic selection in a breeding program for sheep[J]. Genet Sel Evol, 2017, 49 (1): 76.
doi: 10.1186/s12711-017-0351-0 |
25 |
BOLORMAA S , GORE K , VAN DER WERF J H J , et al. Design of a low-density SNP chip for the main Australian sheep breeds and its effect on imputation and genomic prediction accuracy[J]. Anim Genet, 2015, 46 (5): 544- 556.
doi: 10.1111/age.12340 |
26 |
WANG J , XING S , ZHOU Y , et al. Research note: A low-density SNP genotyping panel for Chinese native chickens[J]. Poult Sci, 2025, 104 (1): 104609.
doi: 10.1016/j.psj.2024.104609 |
27 |
HERRY F , HERAULT F , PICARD DRUET D , et al. Design of low density SNP chips for genotype imputation in layer chicken[J]. BMC Genet, 2018, 19 (1): 108.
doi: 10.1186/s12863-018-0695-7 |
28 |
WANG C , HABIER D , PEIRIS B L , et al. Accuracy of genomic prediction using an evenly spaced, low-density single nucleotide polymorphism panel in broiler chickens[J]. Poult Sci, 2013, 92 (7): 1712- 1723.
doi: 10.3382/ps.2012-02941 |
29 | MAO R , ZHOU L , WANG Z , et al. A comprehensive strategy combining feature selection and local optimization algorithm to optimize the design of low-density chip for genomic selection[J]. Agriculture-Basel, 2023, 13 (3): 11. |
30 |
WU X , LI H , FERRETTI R , et al. A unified local objective function for optimally selecting SNPs on arrays for agricultural genomics applications[J]. Anim Genet, 2020, 51 (2): 306- 310.
doi: 10.1111/age.12916 |
31 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
32 |
DANECEK P , BONFIELD J K , LIDDLE J , et al. Twelve years of SAMtools and BCFtools[J]. Gigascience, 2021, 10 (2): giab008.
doi: 10.1093/gigascience/giab008 |
33 |
DELANEAU O , ZAGURY J , ROBINSON M R , et al. Accurate, scalable and integrative haplotype estimation[J]. Nat Commun, 2019, 10 (1): 5436.
doi: 10.1038/s41467-019-13225-y |
34 |
RUBINACCI S , DELANEAU O , MARCHINI J . Genotype imputation using the Positional Burrows Wheeler Transform[J]. PLoS Genet, 2020, 16 (11): e1009049.
doi: 10.1371/journal.pgen.1009049 |
35 |
DASSONNEVILLE R , BRONDUM R F , DRUET T , et al. Effect of imputing markers from a low-density chip on the reliability of genomic breeding values in Holstein populations[J]. J Dairy Sci, 2011, 94 (7): 3679- 3686.
doi: 10.3168/jds.2011-4299 |
36 |
ALI M , ZHANG Y , RASHEED A , et al. Genomic prediction for grain yield and yield-related traits in Chinese winter wheat[J]. Int J Mol Sci, 2020, 21 (4): 1342.
doi: 10.3390/ijms21041342 |
37 |
MADSEN P , SU G , LABOURIAU R , et al. DMU-a package for analyzing multivariate mixed models[J]. J Anim Sci, 2014, 92 (12): 5406- 5416.
doi: 10.2527/jas.2014-7781 |
38 |
FERNANDES JUNIOR G A , ROSA G J M , VALENTE B D , et al. Genomic prediction of breeding values for carcass traits in Nellore cattle[J]. Genet Sel Evol, 2016, 48, 7.
doi: 10.1186/s12711-016-0188-y |
39 |
GUO X , CHRISTENSEN O F , OSTERSEN T , et al. Improving genetic evaluation of litter size and piglet mortality for both genotyped and nongenotyped individuals using a single-step method[J]. J Anim Sci, 2015, 93 (2): 503- 512.
doi: 10.2527/jas.2014-8331 |
40 |
ZHOU L , WANG Y , YU J , et al. Improving genomic prediction for two Yorkshire populations with a limited size using the single-step method[J]. Anim Genet, 2019, 50 (4): 391- 394.
doi: 10.1111/age.12806 |
[1] | 赵顺然, 付桂鑫, 庞钊琪, 夏威, 李俊杰, 陶晨雨. 猪颗粒细胞在卵泡闭锁中的作用机制研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2537-2545. |
[2] | 王运珂, 王娜, 岳珂, 何坤淼, 张兴, 刘垚, 张改平. 体外对猪流行性腹泻病毒复制具有抑制效应的物质[J]. 畜牧兽医学报, 2025, 56(6): 2577-2589. |
[3] | 吴超, 明文含, 卢姝婉, 杨彩梅, 刘金松, 马翔, 张瑞强. 猪流行性腹泻病毒的天然免疫逃避机制及其防控研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2590-2599. |
[4] | 周敏, 汤德元, 曾智勇, 王彬, 黄涛, 胡雯雯, 毛茵茗, 周飘, 何松. 猪流行性腹泻病毒蛋白与宿主蛋白相互作用的研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2600-2612. |
[5] | 吴桐, 王楠, 邢雨欣, 张犇, 胡潘阳, 张海涛, 朱玉峰, 吴相哲, 杨峰, 李秀领, 王克君, 韩雪蕾, 李新建, 余彤, 柏峻, 李改英, 乔瑞敏. 豫南黑猪背膘厚度与全基因组拷贝数变异的关联研究[J]. 畜牧兽医学报, 2025, 56(6): 2639-2648. |
[6] | 柳思奇, 杨榛, 杨雅楠, 蔡原, 赵生国. 干扰AdiopR2对藏猪皮下腹股沟脂肪细胞产热的影响[J]. 畜牧兽医学报, 2025, 56(6): 2649-2660. |
[7] | 陈志华, 王琪, 张进, 杨连弟, 杨天庆, 王敬, 龙定彪, 黄金秀, 黄文明. 饲粮净能和赖氨酸水平对荣昌母猪妊娠后期繁殖性能、血清激素、泌乳性能及粪便菌群多样性的影响[J]. 畜牧兽医学报, 2025, 56(6): 2801-2815. |
[8] | 卢会鹏, 曹世诺, 吴植, 陈长春, 陈文玉, 成玉婷, 周晓慧, 孙怀昌, 朱善元. 表达非洲猪瘟病毒基因B602L-B646L的重组病毒免疫原性的初步分析[J]. 畜牧兽医学报, 2025, 56(6): 2816-2825. |
[9] | 李程程, 赵永祥, 曹秋霞, 宋旭, 李宇鹏, 范宝超, 郭容利, 徐业芬, 李彬. 紧密连接蛋白CLDN4促进猪流行性腹泻病毒感染[J]. 畜牧兽医学报, 2025, 56(6): 2826-2835. |
[10] | 国德洋, 胡慧, 郑雪莉, 姜艳芬. 猪防御素-1的原核表达及抑菌效应分析[J]. 畜牧兽医学报, 2025, 56(6): 2836-2846. |
[11] | 王妍, 黄焮榆, 吴桂莹, 吴婉萍, 吕其壮. 2017—2023年我国猪圆环病毒3型的遗传变异分析[J]. 畜牧兽医学报, 2025, 56(6): 2857-2867. |
[12] | 陈长春, 吴植, 任冠宇, 陈文玉, 曹世诺, 朱睿, 张力, 成玉婷, 朱善元, 卢会鹏. 表达非洲猪瘟pp62与Hsp70蛋白重组腺病毒对小鼠的免疫原性分析[J]. 畜牧兽医学报, 2025, 56(6): 3027-3031. |
[13] | 陈云龙, 樊港, 樊心怡, 郭永超, 张鑫淼, 王妍, 张仕强. 一株具有多位点核苷酸替换的新型猪圆环病毒2d亚型毒株的分离与鉴定[J]. 畜牧兽医学报, 2025, 56(6): 3032-3040. |
[14] | 罗嘉, 蒲强, 柴捷, 陈力, 王金勇. 母猪子宫内热应激的生物学效应及遗传机制分析[J]. 畜牧兽医学报, 2025, 56(5): 2004-2014. |
[15] | 王亚楠, 郭雅茹, 姜艳平, 崔文, 李佳璇, 李一经, 王丽. 猪轮状病毒的分离鉴定及其致病性分析[J]. 畜牧兽医学报, 2025, 56(5): 2259-2269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||