畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2168-2181.doi: 10.11843/j.issn.0366-6964.2025.05.017
孙国欣1,2(), 李蕴华1, 赛音1, 郭文华1, 赵艳红2, 张满新3, 刘佳森1,*(
)
收稿日期:
2024-10-28
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
刘佳森
E-mail:a2432613041@163.com;jsliu588@163.com
作者简介:
孙国欣(1999-),男,山东青州人,硕士生,主要从事动物分子育种研究,E-mail: a2432613041@163.com
基金资助:
SUN Guoxin1,2(), LI Yunhua1, SAI Yin1, GUO Wenhua1, ZHAO Yanhong2, ZHANG Manxin3, LIU Jiasen1,*(
)
Received:
2024-10-28
Online:
2025-05-23
Published:
2025-05-27
Contact:
LIU Jiasen
E-mail:a2432613041@163.com;jsliu588@163.com
摘要:
旨在对湖羊SNP芯片基因分型结果进行选择信号检测,探索湖羊的种群结构,挖掘与湖羊重要经济性状相关的候选基因,为进一步创新利用湖羊品种提供理论基础。本研究对高繁殖湖羊群体中396只个体(320只母羊、76只公羊)使用绵羊50K SNP芯片进行基因分型。经质控后对所选湖羊群体进行主成分分析与亲缘关系评估。通过整合单倍体型得分(iHS)、中性检验统计量(Tajima’s D)、复合似然比检验(CLR)和连续性纯合片段(ROH)四种选择信号方法综合筛选候选区域并进行基因注释,通过GO-KEGG富集分析、NCBI数据库、检索文献及GWAS ATLAS数据库确定候选基因的功能。主成分分析结果显示,大部分湖羊个体集中分布,亲缘关系结果表明湖羊个体间亲缘关系较远,湖羊群体平均近交指数FROH=0.010 3,表明湖羊种群近交水平较低,同时ROH分析结果显示绝大多数ROH片段为 < 10 Mb的短ROH片段,说明湖羊在较远世代发生过近交。设置群体内iHS、Tajima ’s D、CLR以及ROH结果的top5%为受选择区域,共找到45.86 Mb的候选区域,约占绵羊参考基因组的1.75%。经基因注释后iHS检测到1 424个基因,Tajima ’s D检测到760个基因,CLR检测到964个基因,ROH检测到647个基因,取两种及以上方法得到的基因交集部分挖掘到337个候选基因。GO-KEGG富集结果显示,GO分析富集(P < 0.05)到角质化、中间长丝组织和骨骼系统发育等条目,KEGG分析富集(P < 0.05)到ECM受体相互作用、致心律失常性右心室心肌病与GnRH分泌等通路。功能注释发现65个与重要经济性状相关的候选基因,其中大部分候选基因与生长和繁殖性状相关。本试验对湖羊高繁单群体进行分析,筛选出与湖羊生长性状相关的基因包括:初生重(CAPN3、ERLEC1、LAP3)、骨骼发育(ACAN、COL5A2、HAPLN1、HAPLN3)、肌肉发育(FLVCR1、MUSTN1、PDLIM5)、饲料转化率与采食量(PLIN1、CCSER1、LAP3)和体尺(CSMD3、GPC6、LCORL)等,与湖羊繁殖性状相关的基因包括产羔数(BMPR1B、GPRIN3、HCRTR1、MEPE、MAST4)等,以及与其他经济性状相关的基因,对提升湖羊品种选育效率,优化绵羊品种选育方法提供了一定的理论依据和技术支撑。
中图分类号:
孙国欣, 李蕴华, 赛音, 郭文华, 赵艳红, 张满新, 刘佳森. 湖羊群体结构分析与经济性状相关选择信号检测[J]. 畜牧兽医学报, 2025, 56(5): 2168-2181.
SUN Guoxin, LI Yunhua, SAI Yin, GUO Wenhua, ZHAO Yanhong, ZHANG Manxin, LIU Jiasen. Population Structure Analysis and Economic Traits Related Selection Signal Detection of Hu Sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2168-2181.
表 1
与生长性状相关的候选基因"
基因 Gene | 染色体 Chromosome | 检测方法 Test method | 相关性状 Related trait | 参考文献 Reference |
ACAN | 18 | ROH、Tajima’s D | 骨骼发育 | [ |
CSMD3 | 9 | iHS、ROH、Tajima’s D | 体尺 | [ |
CCSER1 | 6 | iHS、ROH | 采食量 | [ |
CAPN3 | 7 | iHS、CLR | 初生重 | [ |
COL5A2 | 2 | iHS、ROH | 骨骼发育与皮肤发育 | [ |
ERLEC1 | 3 | iHS、CLR、ROH | 初生重 | [ |
FLVCR1 | 12 | iHS、ROH | 肌肉发育 | [ |
FAM184B | 6 | iHS、ROH | 14月龄体重 | [ |
GALNTL6 | 2 | iHS、CLR、ROH | 平均日增重 | [ |
GPC6 | 10 | iHS、Tajima’s D | 体尺 | [ |
HAPLN1 | 5 | iHS、CLR | 骨骼发育 | 无 |
HAPLN3 | 18 | ROH、Tajima’s D | 骨骼发育 | 无 |
IBSP | 6 | iHS、ROH、Tajima’s D | 眼肌面积 | [ |
LAP3 | 6 | iHS、ROH | 初生重、采食量 | [ |
LCORL | 6 | iHS、ROH | 体尺 | [ |
MED28 | 6 | iHS、ROH | 宰前活重 | [ |
MUSTN1 | 19 | ROH、Tajima’s D | 肌肉发育 | [ |
PLIN1 | 18 | iHS、ROH | 饲料转化率 | [ |
PDE9A | 1 | iHS、CLR | 肠胃发育 | [ |
PDLIM5 | 6 | iHS、ROH | 肌肉发育 | [ |
STRN3 | 18 | iHS、CLR | 肥尾发育 | [ |
SUCLG2 | 19 | CLR、Tajima’s D | 能量代谢 | [ |
SLC13A1 | 4 | iHS、Tajima’s D | 软骨发育 | [ |
表 2
与繁殖性状相关的候选基因"
基因 Gene | 染色体 Chromosome | 检测方法 Test method | 相关性状 Related trait | 参考文献 Reference |
SPP1 | 6 | iHS、ROH、Tajima’s D | 卵细胞发育与受精 | [ |
CACNA1D | 19 | CLR、ROH | 受胎率 | [ |
KCNN3 | 1 | iHS、ROH | 早产 | [ |
ABHD2 | 18 | iHS、ROH、Tajima’s D | 精液品质 | [ |
PPM1K | 6 | iHS、ROH | 引发多囊卵巢综合征 | [ |
ADGRB3 | 9 | iHS、ROH | 胚胎发育 | [ |
BMPR1B | 6 | iHS、ROH | 产羔数的主效基因 | [ |
CDCA7 | 2 | iHS、CLR | 高排卵 | [ |
COL4A3 | 2 | iHS、ROH | 繁殖相关生物过程 | [ |
GPRIN3 | 6 | CLR、ROH | 产羔数 | [ |
FSIP2 | 2 | CLR、ROH | 精子活力 | [ |
HSD3B1 | 1 | iHS、Tajima’s D | 卵泡发育 | [ |
HCRTR1 | 2 | iHS、ROH | 产羔数 | [ |
MEPE | 6 | iHS、ROH、Tajima’s D | 产羔数 | [ |
MAST4 | 16 | iHS、CLR | 产羔数 | [ |
ROBO2 | 1 | iHS、Tajima’s D | 卵泡发育、母羊生产次数 | [ |
SLIT2 | 6 | iHS、CLR | 卵泡发育 | [ |
NDRG1 | 9 | iHS、CLR | 精子发生 | [ |
表 3
人类同源基因验证结果"
结构域 Domain | 相关性状 Related trait | 基因 Gene |
骨骼Skeleton | 身高、胸高、腰臀围、 骨密度 | ACAN、ERLEC1、FLVCR1、FAM184B、GPC6、HAPLN1、HAPLN3、 IBSP、LAP3、LCORL、MED28、MUSTN1、PLIN1、PDE9A、PDLIM5、 ABHD2、CACNA1D、HCRTR1、KCNN3、MEPE、MAST4、ROBO2、 SLIT2、SPP1、NDRG1、COL4A4、ABCG2、DPY19L1、HTR1B、DNAJC18、 SND1、GPATCH3、STAB1、BRAF、 |
新陈代谢 Metabolism | 初生重、体重、 | ACAN、ERLEC1、GALNTL6、GPC6、HAPLN3、IBSP、LAP3、LCORL、 MUSTN1、PDLIM5、CACNA1D、HCRTR1、KCNN3、MAST4、ROBO2、 SLIT2、COL4A4、ABCG2、DPY19L1、HTR1B、DNAJC18、SND1、STAB1、 PRG4、TNIK、FABP3、KLF12、LINGO2 |
生殖Reproduction | 初情期 | ABHD2、CACNA1D、MAST4、COL4A4、STAB1、KLF12 |
免疫学 Immunology | 血细胞体积、血细胞比容、血红蛋白浓度 | WDHD1 FBLN1、GPATCH3、DOCK10、MSR1、TNIK、KLF12 |
1 | 王韵斐, 陈秋菊, 武翠香, 等. 巴美肉羊与湖羊杂交效果研究[J]. 现代畜牧科技, 2024 (12): 10- 13. |
WANG Y F , CHEN Q J , WU C X , et al. Study on the hybridization effect of Bamei mutton sheep and Hu sheep[J]. Modern Animal Husbandry Science & Technology, 2024 (12): 10- 13. | |
2 | PAN Z Y , HE X Y , WANG X Y , et al. Selection signature in domesticated animals[J]. Yi Chuan, 2016, 38 (12): 1069- 1080. |
3 |
LIU D Y , CHEN Z L , ZHAO W , et al. Genome-wide selection signatures detection in Shanghai Holstein cattle population identified genes related to adaption, health and reproduction traits[J]. BMC Genomics, 2021, 22 (1): 747.
doi: 10.1186/s12864-021-08042-x |
4 |
赵家豪, 刘贤, 张子敬, 等. 德南牛全基因组变异解析和功能基因挖掘[J]. 中国牛业科学, 2024, 50 (3): 1- 6.
doi: 10.3969/j.issn.1001-9111.2024.03.001 |
ZHAO J H , LIU X , ZHANG Z J , et al. Whole-genome variation analysis and functional gene mining of Denan cattles[J]. China Cattle Science, 2024, 50 (3): 1- 6.
doi: 10.3969/j.issn.1001-9111.2024.03.001 |
|
5 |
戴超辉, 崔乐康, 李辉, 等. 苏山猪和巴克夏猪全基因组ROH检测和选择信号分析[J]. 畜牧兽医学报, 2024, 55 (12): 5452- 5463.
doi: 10.11843/j.issn.0366-6964.2024.12.012 |
DAI C H , CUI L K , LI H , et al. Whole genome ROH detection and selection signal analysis in Sushan pigs and Berkshire pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (12): 5452- 5463.
doi: 10.11843/j.issn.0366-6964.2024.12.012 |
|
6 |
吴平先, 王俊戈, 刁淑琪, 等. 基于填充测序数据的荣昌猪群体遗传结构和选择信号分析[J]. 畜牧兽医学报, 2025, 56 (1): 147- 158.
doi: 10.11843/j.issn.0366-6964.2025.01.014 |
WU P X , WANG J G , DIAO S Q , et al. Analysis of genetic architecture characteristics and selection signature by imputed whole genome sequencing data in Rongchang pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (1): 147- 158.
doi: 10.11843/j.issn.0366-6964.2025.01.014 |
|
7 |
TU Y J , LIU Y F , ZHANG M , et al. Identifying signatures of selection related to CoMb development[J]. J Poult Sci, 2021, 58 (1): 5- 11.
doi: 10.2141/jpsa.0190104 |
8 |
LIU Z X , BAI C Y , SHI L L , et al. Detection of selection signatures in South African Mutton Merino sheep using whole-genome sequencing data[J]. Anim Genet, 2022, 53 (2): 224- 229.
doi: 10.1111/age.13173 |
9 | YAO Y X , PAN Z Y , DI R , et al. Whole genome sequencing reveals the effects of recent artificial selection on litter size of Bamei mutton sheep[J]. Animals (Basel), 2021, 11 (1): 157. |
10 | 常倩倩. 基于重测序技术筛选策勒黑羊多胎性状相关的基因及其功能研究[D]. 阿拉尔: 塔里木大学, 2022. |
CHANG Q Q. Screening of genes related to multiple birth traits and theirfunctions in Qira black sheep based on resequencing technology[D]. Alaer: Tarim University, 2022. (in Chinese) | |
11 |
祁军英, 裴全帮, 张文魁, 等. 全基因组选择信号鉴定高原型藏羊毛用性状候选基因及关联分析[J]. 畜牧兽医学报, 2024, 55 (12): 5511- 5526.
doi: 10.11843/j.issn.0366-6964.2024.12.017 |
QI J Y , PEI Q B , ZHANG W K , et al. Genome-wide selective signal identification and association analysis of candidate genes for Tibetan sheep wool traits[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (12): 5511- 5526.
doi: 10.11843/j.issn.0366-6964.2024.12.017 |
|
12 | ZHANG W T , JIN M L , LI T T , et al. Whole genome resequencing reveals selection signals related to wool color in sheep[J]. Animals (Basel), 2023, 13 (20): 3265. |
13 | 李晓龙. 基于全基因组重测序数据挖掘绵羊产奶和产羔性状的关键基因[D]. 兰州: 甘肃农业大学, 2022. |
LI X L. Identification of candidate genes for milk production and litter sizetraits in sheep based on whole genome resequencing data[D]. Lanzhou: Gansu Agricultural University, 2022. (in Chinese) | |
14 | LI R N , ZHAO Y H T , LIANG N M , et al. Genome-wide signal selection analysis revealing genes potentially related to sheep-milk-production traits[J]. Animals (Basel), 2023, 13 (10): 1654. |
15 | 施会彬. 基于全基因组重测序揭示盘欧羊选育群体遗传多样性与选择信号[D]. 兰州: 甘肃农业大学, 2023. |
SHI H B. Whole genome resequencing reveals genetic diversity andselection signals in Panou sheep selection breedingpopulation[D]. Lanzhou: Gansu Agricultural University, 2023. (in Chinese) | |
16 |
ZHAO L M , YUAN L F , LI F D , et al. Whole-genome resequencing of Hu sheep identifies candidate genes associated with agronomic traits[J]. J Genet Genomics, 2024, 51 (8): 866- 876.
doi: 10.1016/j.jgg.2024.03.015 |
17 |
ZHANG D Y , ZHANG X X , LI F D , et al. Whole-genome resequencing identified candidate genes associated with the number of ribs in Hu sheep[J]. Genomics, 2021, 113 (4): 2077- 2084.
doi: 10.1016/j.ygeno.2021.05.004 |
18 | 谢锐. 基于湖羊重测序数据的全基因组选择信号检测及与繁殖性状相关候选基因鉴定[D]. 南京: 南京农业大学, 2020. |
XIE R. Genome-wide scan for selection signature and identification of candidate genes by using resequencing data of Hu sheep[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese) | |
19 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
20 |
WANG J , ZHANG Z . GAPIT Version 3:Boosting Power and Accuracy for Genomic Association and Prediction[J]. Genomics Proteomics Bioinformatics, 2021, 19 (4): 629- 640.
doi: 10.1016/j.gpb.2021.08.005 |
21 |
VOIGHT B F , KUDARAVALLI S , WEN X Q , et al. A map of recent positive selection in the huangenome[J]. PLoS Biol, 2006, 4 (3): 72.
doi: 10.1371/journal.pbio.0040072 |
22 |
陶伟, 侯黎明, 王彬彬, 等. 利用全基因组选择信号方法鉴别影响猪肉滴水损失的候选基因[J]. 畜牧兽医学报, 2022, 53 (5): 1373- 1383.
doi: 10.11843/j.issn.0366-6964.2022.05.006 |
TAO W , HOU L M , WANG B B , et al. Identification of candidate genes affecting drip loss in pork by genome-wide selection signal method[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (5): 1373- 1383.
doi: 10.11843/j.issn.0366-6964.2022.05.006 |
|
23 |
BROWNING B L , BROWNING S R . Genotype imputation with millions of reference samples[J]. Am J Hum Genet, 2016, 98 (1): 116- 126.
doi: 10.1016/j.ajhg.2015.11.020 |
24 |
SZPIECH Z A , HERNANDEZ R D . Selscan: an efficient multithreaded program to perform EHH-based scans for positive selection[J]. Mol Biol Evol, 2014, 31 (10): 2824- 2827.
doi: 10.1093/molbev/msu211 |
25 |
PAVLIDIS P , ŽIVKOVIC D , STAMATAKIS A , et al. SweeD: likelihood-based detection of selective sweeps in thousands of genomes[J]. Mol Biol Evol, 2013, 30 (9): 2224- 2234.
doi: 10.1093/molbev/mst112 |
26 |
LENCZ T , LAMBERT C , DEROSSE P , et al. MALHOTRA.Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia[J]. Proc Natl Acad Sci U S A, 2007, 104 (50): 19942- 19947.
doi: 10.1073/pnas.0710021104 |
27 |
BAO J J , XIONG J K , HUANG J P , et al. Genetic diversity, selection signatures, and genome-wide association study identify candidate genes related to litter size in Hu sheep[J]. Int J Mol Sci, 2024, 25 (17): 9397.
doi: 10.3390/ijms25179397 |
28 | 张彦威, 于丽娟, 徐新明, 等. 选择信号分析及其对绵羊功能基因的挖掘进展[J]. 中国畜牧兽医, 2023, 50 (12): 4935- 4946. |
ZHANG Y W , YU L J , XU X M , et al. Advance on selection signal analysis and its exploration for functional genes in sheep[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (12): 4935- 4946. | |
29 |
潘章源, 狄冉, 刘秋月, 等. 绵羊多羔主效基因BMPR1B的研究进展[J]. 家畜生态学报, 2015, 36 (5): 1- 6.
doi: 10.3969/j.issn.1673-1182.2015.05.001 |
PAN Z Y , DI R , LIU Q Y , et al. Advances in ovine prolificacy gene BMPR1B[J]. Journal of Domestic Animal Ecology, 2015, 36 (5): 1- 6.
doi: 10.3969/j.issn.1673-1182.2015.05.001 |
|
30 |
MANZARI Z , MEHRABANI-YEGANEH H , NEJATI-JAVAREMI A , et al. Detecting selection signatures in three Iranian sheep breeds[J]. Anim Genet, 2019, 50 (3): 298- 302.
doi: 10.1111/age.12772 |
31 |
LIN Y , LU Z K , GUO T T , et al. Key genes and metabolites that regulate wool fibre diameter identified by combined transcriptome and metabolome analysis[J]. Genomics, 2024, 116 (5): 110886.
doi: 10.1016/j.ygeno.2024.110886 |
32 |
YANG J , LI X , CAO Y H , et al. Comparative mRNA and miRNA expression in European mouflon (Ovis musimon) and sheep (Ovis aries) provides novel insights into the genetic mechanisms for female reproductive success[J]. Heredity, 2019, 122 (2): 172- 186.
doi: 10.1038/s41437-018-0090-1 |
33 |
ORTEGA M S , DENICOL A C , COLE J B , et al. Use of single nucleotide polymorphisms in candidate genes associated with daughter pregnancy rate for prediction of genetic merit for reproduction in Holstein cows[J]. Anim Genet, 2016, 47 (3): 288- 297.
doi: 10.1111/age.12420 |
34 |
DAY L J , SCHAA K L , RYCKMAN K K , et al. Single-nucleotide polymorphisms in the KCNN3 gene associate with preterm birth[J]. Reprod Sci, 2011, 18 (3): 286- 295.
doi: 10.1177/1933719110391277 |
35 |
GHOREISHIFAR S M , ERIKSSON S , JOHANSSON A M , et al. Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds[J]. Genet Sel Evol, 2020, 52 (1): 52.
doi: 10.1186/s12711-020-00571-5 |
36 |
AN B , XIA J , CHANG T , et al. Genome-wide association study reveals candidate genes associated with body measurement traits in Chinese Wagyu beef cattle[J]. Anim Genet, 2019, 50 (4): 386- 390.
doi: 10.1111/age.12805 |
37 |
NEBENDAHl C , GRS S , ALBRECHT E , et al. Early postnatal feed restriction reduces liver connective tissue levels and affects H3K9 acetylation state of regulated genes associated with protein metabolism in low birth weight pigs[J]. J Nutr Biochem, 2016, 29, 41- 55.
doi: 10.1016/j.jnutbio.2015.10.017 |
38 |
WEI C H , WANG H H , LIU G , et al. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds[J]. BMC Genomics, 2015, 16 (1): 194.
doi: 10.1186/s12864-015-1384-9 |
39 | RAMLJAK J , PEHAR M , CERANAC D , et al. Genomic characterization of local croatian sheep breeds-effective population size[J]. Animals (Basel), 2024, 14 (13): 1928. |
40 | HITIT M , KAYA A , MEMILI E . Sperm long non-coding RNAs as markers for ram fertility[J]. Front Vet Sci, 2024, 11 (10): 1337939. |
41 |
POKHAREL K , PEIPPO J , HONKATUKIA M , et al. Integrated ovarian mRNA and miRNA transcriptome profiling characterizes the genetic basis of prolificacy traits in sheep (Ovis aries)[J]. BMC genomics, 2018, 19 (1): 104.
doi: 10.1186/s12864-017-4400-4 |
42 | YURCHENKO A A , DENISKOVA T E , YUDIN N S , et al. High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia[J]. BMC Genomics, 2019, 20 (3): 294. |
43 |
RAMOS Z , GARRICK D J , BLAIR H T , et al. Genomic regions associated with wool, growth and reproduction traits in Uruguayan Merino sheep[J]. Genes, 2023, 14 (1): 167.
doi: 10.3390/genes14010167 |
44 | MA Z , WANG W , ZHANG D , et al. Polymorphisms of PLIN1 and MOGAT1 genes and their association with feed efficiency in Hu sheep[J]. Gene, 2024, 897 (1): 148072. |
45 |
JIANG Y , LI X J , LIU J L , et al. Genome-wide detection of genetic structure and runs of homozygosity analysis in Anhui indigenous and Western commercial pig breeds using PorcineSNPs80k data[J]. BMC Genomics, 2022, 23 (1): 373.
doi: 10.1186/s12864-022-08583-9 |
46 |
YANG B G , YUAN Y , ZUOH D K , et al. Genome-wide selection signal analysis of Australian Boer goat reveals artificial selection imprinting on candidate genes related to muscle development[J]. Anim Genet, 2021, 52 (4): 550- 555.
doi: 10.1111/age.13092 |
47 | MU L S , YE Z H , HU J H , et al. PPM1K-regulated impaired catabolism of branched-chain amino acids orchestrates polycystic ovary syndrome[J]. EBioMedicine, 2023, 89 (1): 104492. |
48 |
LIN T , HE X Y , WANG X Y , et al. Litter size of sheep (Ovis aries): Inbreeding depression and homozygous regions[J]. Genes, 2021, 12 (1): 109.
doi: 10.3390/genes12010109 |
49 |
MA X F , LIU A J , TIAN S J . A meta-analysis of mRNA expression profiling studies in sheep with different FecB genotypes[J]. Anim Genet, 2023, 54 (3): 225- 238.
doi: 10.1111/age.13304 |
50 | 常成, 张茜, 贺小云, 等. 绵羊甲状腺miR-370-3p靶向COL4A3基因调控繁殖力性状的初步研究[J]. 中国农业大学学报, 2023, 28 (9): 108- 116. |
CHANG C , ZHANG Q , HE X Y , et al. Preliminary study on the regulation of fertility traits by miR-370-3p targeting COL4A3 gene in sheep thyroid gland[J]. Journal of China Agricultural University, 2023, 28 (9): 108- 116. | |
51 |
ZHU M T , ZHANG H M , YANG H , et al. Polymorphisms and association of GRM1, GNAQ and HCRTR1 genes with seasonal reproduction and litter size in three sheep breeds[J]. Reprod Domest Anim, 2022, 57 (5): 532- 540.
doi: 10.1111/rda.14091 |
52 |
PURUHITA , NOOR R R , MARGAWATI E T , et al. Association of the single nucleotide polymorphism in CAPN3 gene with growth performance in Merino and Garut (MEGA) backcross sheep[J]. J Genet Eng Biotechnol, 2023, 21 (1): 77.
doi: 10.1186/s43141-023-00524-7 |
53 |
LIU D H , LI X , WANG L , et al. Genome-wide association studies of body size traits in Tibetan sheep[J]. BMC Genomics, 2024, 25 (1): 739.
doi: 10.1186/s12864-024-10633-3 |
54 | 付玉, 张博, 凌遥, 等. 骨骼肌生长发育调控基因MUSTN1的研究进展[J]. 中国畜牧杂志, 2022, 58 (5): 1- 4. |
FU Y , ZHANG B , LING Y , et al. Advances in MUSTN1 genes in the regulation of skeletal muscle growth and development[J]. Chinese Journal of Animal Science, 2022, 58 (5): 1- 4. | |
55 | CHEN Z Y , WANG G X , WANG W M , et al. PDE9A polymorphism and association analysis with growth performance and gastrointestinal weight of Hu sheep[J]. Gene, 2024, 900 (1): 148137. |
56 |
BAKHTIARIZADEH M R . Deciphering the role of alternative splicing as a potential regulator in fat-tail development of sheep: a comprehensive RNA-seq based study[J]. Sci Rep, 2024, 14 (1): 2361.
doi: 10.1038/s41598-024-52855-1 |
57 |
SERRANITO B , CAVALAZZI M , VIDAL P , et al. Local adaptations of Mediterranean sheep and goats through an integrative approach[J]. Sci Rep, 2021, 11 (1): 21363.
doi: 10.1038/s41598-021-00682-z |
58 | ZHAO X , ONTERU S K , PIRIPI S , et al. In a shake of a lamb 's tail: using genomics to unravel a cause of chondrodysplasia in Texel sheep[J]. Anim Genet, 2012, 43 (1): 9- 18. |
59 |
TAO L , HE X E , JIANG Y T , et al. Genome-wide analyses reveal genetic convergence of prolificacy between goats and sheep[J]. Genes, 2021, 12 (4): 480.
doi: 10.3390/genes12040480 |
60 |
ZHU M T , ZHANG H M , YANG H , et al. Polymorphisms and association of GRM1, GNAQ and HCRTR1 genes with seasonal reproduction and litter size in three sheep breeds[J]. Reprod Domest Anim, 2022, 57 (5): 532- 540.
doi: 10.1111/rda.14091 |
61 | AKHMET N , ZHU L , SONG J , et al. Exploring the sheep MAST4 gene variants and their associations with litter size[J]. Animals (Basel), 2024, 14 (4): 591. |
62 | ZANG S Q , YANG X R , YE J F , et al. Quantitative phosphoproteomics explain cryopreservation-induced reductions in ram sperm motility[J]. J Proteomics, 2024, 298 (1): 105153. |
63 | QU Y H , JIAN L Y , CE L , et al. Identification of candidate genes in regulation of spermatogenesis in sheep testis following dietary vitamin E supplementation[J]. Anim Reprod Sci, 2019, 205 (1): 52- 61. |
64 | WANG J , CHEN H , ZENG X . Identification of hub genes associated with follicle development in multiple births sheep by WGCNA[J]. Front Vet Sci, 2022, 9 (1): 1057282. |
65 |
DICKINSON R E , HRYHORSKYJ L , TREMEWAN H , et al. Involvement of the SLIT/ROBO pathway in follicle development in the fetal ovary[J]. Reproduction, 2010, 139 (2): 395- 407.
doi: 10.1530/REP-09-0182 |
66 | SMITCHGER J A , TAYLOR J B , MOUSEL M R , et al. Genome-wide associations with longevity and reproductive traits in U.S. rangeland ewes[J]. Front Genet, 2024, 15 (1): 1398123. |
[1] | 王勤倩, 高振东, 陆颖, 马若珊, 邓卫东, 和晓明. 全基因组重测序在中国地方黄牛上的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2026-2037. |
[2] | 李笑微, 田微, 刘媛, 李惠侠. 高温应激下湖羊卵巢颗粒细胞m6A甲基化修饰差异研究[J]. 畜牧兽医学报, 2025, 56(4): 1712-1721. |
[3] | 黄雅妮, 唐熹, 李井泉, 魏嘉诚, 吴珍芳, 李新云, 肖石军, 张志燕. 大规模群体解析猪日增重及达百千克体重日龄的潜在因果基因[J]. 畜牧兽医学报, 2025, 56(3): 1100-1109. |
[4] | 贾万里, 王继英, 李菁璇, 王彦平, 耿立英, 张传生, 赵雪艳. 基于转录组测序技术鉴别影响莱芜猪滴水损失的关键基因[J]. 畜牧兽医学报, 2025, 56(3): 1134-1146. |
[5] | 吴平先, 王俊戈, 刁淑琪, 柴捷, 查琳, 郭宗义, 陈红跃, 龙熙. 基于填充测序数据的荣昌猪群体遗传结构和选择信号分析[J]. 畜牧兽医学报, 2025, 56(1): 147-158. |
[6] | 鲁秀, 张名爱, 孔敏, 张晶, 王秉翰, 侯中一, 滕兴怡, 姜雅静, 凡文磊, 王宝维. 基于转录组和蛋白质组分析筛选五龙鹅产蛋相关候选基因[J]. 畜牧兽医学报, 2025, 56(1): 232-245. |
[7] | 李玮, 吴禧龙, 赵兴瑞, 许兰娇, 杨小斌, 宋小珍. 中药健脾四胃方剂对断奶湖羊生长性能、瘤胃发酵及菌群组成的影响[J]. 畜牧兽医学报, 2025, 56(1): 466-478. |
[8] | 安塔娜, 韩海格, 陶克涛, 宝音德力格尔, 李文博, 芒来. 家马不同毛色遗传特性研究综述[J]. 畜牧兽医学报, 2024, 55(8): 3297-3308. |
[9] | 王婷, 张元庆, 闫益波, 上官明军, 郭宏宇, 王志武. “特藏寒羊”群体遗传结构分析与选择信号的对比分析[J]. 畜牧兽医学报, 2024, 55(7): 2913-2926. |
[10] | 何明亮, 吕晓阳, 蒋永清, 宋正海, 王叶青, 杨会国, 王善禾, 孙伟. 基于转录组测序分析SOX18在湖羊毛囊毛乳头细胞中的功能[J]. 畜牧兽医学报, 2024, 55(6): 2409-2420. |
[11] | 王亚鑫, 王璟, 田学凯, 杨公社, 于太永. 多组学技术在畜禽重要经济性状研究中的应用[J]. 畜牧兽医学报, 2024, 55(5): 1842-1853. |
[12] | 曹玉珠, 邢雨欣, 马乘霖, 管宏波, 贾其辉, 康相涛, 田亚东, 李转见, 刘小军, 李红. 鸡FGF6基因生物学特性及其多态性与经济性状的关联分析[J]. 畜牧兽医学报, 2024, 55(4): 1536-1550. |
[13] | 戴超辉, 崔乐康, 李辉, 赵为民, 付言峰, 李碧侠, 王学敏, 廖超, 陈彦羽, 包文斌, 程金花. 苏山猪和巴克夏猪全基因组ROH检测和选择信号分析[J]. 畜牧兽医学报, 2024, 55(12): 5452-5463. |
[14] | 祁军英, 裴全帮, 张文魁, 徐腾, 左明星, 韩步鹰, 李雪, 刘德会, 王松, 周佰成, 赵凯, 田得红. 全基因组选择信号鉴定高原型藏羊毛用性状候选基因及关联分析[J]. 畜牧兽医学报, 2024, 55(12): 5511-5526. |
[15] | 林晓坤, 都萌萌, 周李生, 黄振刚, 王頔, 周东辉, 曹欣欣, 贺建宁, 赵金山, 李和刚. 敖汉细毛羊羊毛经济性状的全基因组关联分析[J]. 畜牧兽医学报, 2024, 55(10): 4346-4359. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||