畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2026-2037.doi: 10.11843/j.issn.0366-6964.2025.05.004
王勤倩1(), 高振东1, 陆颖1, 马若珊1, 邓卫东1,*(
), 和晓明2,*(
)
收稿日期:
2024-10-17
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
邓卫东,和晓明
E-mail:2032549371@qq.com;1692425306@qq.com;904881299@qq.com
作者简介:
王勤倩(2001-),女,白族,云南丘北人,硕士生,主要从事动物生产,E-mail: 2032549371@qq.com
基金资助:
WANG Qinqian1(), GAO Zhendong1, LU Ying1, MA Ruoshan1, DENG Weidong1,*(
), HE Xiaoming2,*(
)
Received:
2024-10-17
Online:
2025-05-23
Published:
2025-05-27
Contact:
DENG Weidong, HE Xiaoming
E-mail:2032549371@qq.com;1692425306@qq.com;904881299@qq.com
摘要:
随着高通量测序技术的快速发展和基因组研究水平的逐步深入,越来越多畜禽的基因组信息被公开,极大地推动了家畜重要经济性状在全基因水平上的研究。全基因组重测序技术被广泛运用于基因组选择、群体结构解析、遗传多样性评估、进化机制研究等领域,特别是在揭示由基因组序列变异如何影响经济性状方面表现出重要价值。本文旨在综述全基因组重测序技术在地方黄牛群体遗传结构、遗传多样性、起源进化、适应性性状和重要经济性状等研究中的应用进展,为地方黄牛种质资源的改良和保护提供了重要参考。
中图分类号:
王勤倩, 高振东, 陆颖, 马若珊, 邓卫东, 和晓明. 全基因组重测序在中国地方黄牛上的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2026-2037.
WANG Qinqian, GAO Zhendong, LU Ying, MA Ruoshan, DENG Weidong, HE Xiaoming. Research Progress of Whole Genome Resequencing in Chinese Indigenous Cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2026-2037.
表 1
三种测序技术的比较"
测序技术 Sequencing technology | 测序平台 Sequencing platform | 优点 Advantage | 不足 Deficiency |
第一代测序技术First generation sequencing technology | Applied Biosystems | 测序准确性高 | 耗时、成本高和通量低 |
第二代测序技术Next generation sequencing technology | Roche 454、Illumina、Applied Biosystems SOLiD、Ion Torrent测序平台 | 可同时对数百万个DNA片段进行快速测序,全面了解基因组结构、遗传变异、基因表达谱和表观遗传修饰。具有高通量、低成本、覆盖度和精确度高的特点[ | 第二代测序的单个读段长度通常较短,这导致在复杂区域如重复序列或高GC含量区域基因组拼接困难。 |
第三代测序技术Third generation sequencing technology | PacBio RS平台是由Pacific Biosciences公司开发。纳米孔测序技术由Oxford Nanopore Technologies公司开发。 | 可以实现10 kb以上的长读长,这可以克服全基因组重复和结构变异检测等问题。 | 第三代技术目前的局限性是读数的准确性[ |
1 | 赵航, 程玛丽. 2023年我国肉牛产业发展回顾与2024年展望[J]. 畜牧产业, 2024 (4): 32- 39. |
ZHAO H , CHENG M L . Review of China 's beef cattle industry development in 2023 and prospect in 2024[J]. Animal Agriculture, 2024 (4): 32- 39. | |
2 |
魏金销, 谭旭信, 张凌洪, 等. 对南阳牛3个独特经济性状评价与应用[J]. 中国牛业科学, 2019, 45 (1): 65- 67.
doi: 10.3969/j.issn.1001-9111.2019.01.017 |
WEI J X , TAN X X , ZHANG L H , et al. The evaluation and application of three unique economic traits of Nanyang cattle[J]. China Cattle Science, 2019, 45 (1): 65- 67.
doi: 10.3969/j.issn.1001-9111.2019.01.017 |
|
3 | 卢锦, 罗华胜. 玉林黄牛种质资源现状和保护解析[J]. 广西畜牧兽医, 2024, 40 (5): 195- 196. |
LU J , LUO H S . Present situation and protection analysis of Yulin cattle germplasm resources[J]. Guangxi Journal of Animal Husbandry & Veterinary Medicine,, 2024, 40 (5): 195- 196. | |
4 |
蔡保, 郭宪. 中国黄牛全基因组测序研究进展[J]. 中国畜禽种业, 2024, 20 (10): 17- 30.
doi: 10.3969/j.issn.1673-4556.2024.10.004 |
CAO B , GUO X . Research progress on whole genome sequencing of Chinese cattle[J]. The Chinese Livestock and Poultry Breeding, 2024, 20 (10): 17- 30.
doi: 10.3969/j.issn.1673-4556.2024.10.004 |
|
5 | 舒向莲, 刘济丹, 李显寸. 黎平县黄牛产业发展现状问题及对策[J]. 南方农业, 2023, 17 (13): 222-224+228. |
SHU X L , LIU J D , LI X C . Current status, problems and countermeasures of the development of cattle industry in Liping County[J]. South China Agriculture, 2023, 17 (13): 222-224+228. | |
6 | 李婉雪, 李志雄, 王兴宇, 等. 红河黄牛保护与开发利用对策的思考[J]. 中国畜牧业, 2023 (9): 48- 50. |
LI W X , LI Z X , WANG X Y , et al. Reflections on protection, development and utilization strategies of Red river yellow cattle[J]. China Animal Industry, 2023 (9): 48- 50. | |
7 | 范寅, 黄解珠, 和玉丹, 等. 广丰牛遗传资源现状及保种策略[J]. 江西畜牧兽医杂志, 2020 (1): 9- 11. |
FAN Y , HUANG J Z , HE Y D , et al. Genetic resources status and conservation strategy of guangfeng cattle[J]. Jiangxi Journal of Animal Husbandry & Veterinary Medicine, 2020 (1): 9- 11. | |
8 | 刘诗平. 绝不让雪域高原濒危种质资源灭失——西藏阿沛甲咂牛与樟木牛抢救性保种全面展开[J]. 中国畜牧业, 2022 (24): 10- 11. |
LIU S P . The endangered germplasm resources in the snowy plateau will never be lost-The rescue conservation of Apei Jiaza cattle and Zhangmu cattle in Tibet is in full swing[J]. China Animal Industry, 2022 (24): 10- 11. | |
9 | 倪慧勇, 辛英霞, 刘廷玉, 等. 第三次河北省畜禽遗传资源普查系统调查工作开展情况[J]. 北方牧业, 2022 (17): 12. |
NI H Y , XIN Y X , LIU T Y , et al. The third systematic survey of livestock and poultry genetic resources in Hebei Province[J]. Northern Animal Husbandry, 2022 (17): 12. | |
10 | 王秀英. 蒙山牛品种资源现状及开发利用建议[J]. 山东畜牧兽医, 2024, 45 (2): 45- 48. |
WANG X Y . Present situation and development and utilization suggestions of Mengshan cattle variety resources[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2024, 45 (2): 45- 48. | |
11 | 施会彬. 基于全基因组重测序揭示盘欧羊选育群体遗传多样性与选择信号[D]. 兰州: 甘肃农业大学, 2023. |
SHI H B. Whole genome resequencing reveals genetic diversity and selection signals in Panou sheep selection breeding population[D]. Lanzhou: Gansu Agricultural University, 2023. (in Chinese) | |
12 |
LI X , YANG J , SHEN M , et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits[J]. Nat Commun, 2020, 11 (1): 2815.
doi: 10.1038/s41467-020-16485-1 |
13 |
LIN X , FENG M , LI Y , et al. Study on the origin of the Baise horse based on whole-genome resequencing[J]. Anim Genet, 2024, 55 (3): 410- 419.
doi: 10.1111/age.13424 |
14 |
ZHANG T , WANG Z Y , LI Y M , et al. Genetic diversity and population structure in five Inner Mongolia cashmere goat populations using whole-genome genotyping[J]. Anim Biosci, 2024, 37 (7): 1168- 1176.
doi: 10.5713/ab.23.0424 |
15 | 李林密. 基于全基因组重测序对楚香黑猪遗传特征的研究[D]. 武汉: 华中农业大学, 2024. |
LI L M. Genetic characteristics of Chuxiang black pig based on whole genome sequencing[D]. Wuhan: Huazhong Agricultural University, 2024. (in Chinese) | |
16 |
汪文强, 赵生国, 马利青, 等. 动物基因组学重测序的应用研究进展[J]. 畜牧兽医学报, 2016, 47 (10): 1947- 1953.
doi: 10.11843/j.issn.0366-6964.2016.10.001 |
WANG W Q , ZHAO S G , MA L Q , et al. The research progress and application of resequencing based on animal genomics[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47 (10): 1947- 1953.
doi: 10.11843/j.issn.0366-6964.2016.10.001 |
|
17 |
PFEIFER S P . From next-generation resequencing reads to a high-quality variant data set[J]. Heredity, 2017, 118 (2): 111- 124.
doi: 10.1038/hdy.2016.102 |
18 |
GUO Y , YE F , SHENG Q H , et al. Three-stage quality control strategies for DNA re-sequencing data[J]. Brief Bioinform, 2014, 15 (6): 879- 889.
doi: 10.1093/bib/bbt069 |
19 |
ATHANASOPOULOU K , BOTI M A , ADAMOPOULOS P G , et al. Third-generation sequencing: the spearhead towards the radical transformation of modern genomics[J]. Life, 2021, 12 (1): 30.
doi: 10.3390/life12010030 |
20 |
HE B S , ZHU R R , YANG H D , et al. Assessing the impact of data preprocessing on analyzing next generation sequencing data[J]. Front Bioeng Biotechnol, 2020, 8, 817.
doi: 10.3389/fbioe.2020.00817 |
21 |
BOLGER A M , LOHSE M , USADEL B . Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30 (15): 2114- 2120.
doi: 10.1093/bioinformatics/btu170 |
22 |
GARCÍA-ALCALDE F , OKONECHNIKOV K , CARBONELL J , et al. Qualimap: evaluating next-generation sequencing alignment data[J]. Bioinformatics, 2012, 28 (20): 2678- 2679.
doi: 10.1093/bioinformatics/bts503 |
23 |
EWELS P , MAGNUSSON M , LUNDIN S , et al. MultiQC: summarize analysis results for multiple tools and samples in a single report[J]. Bioinformatics, 2016, 32 (19): 3047- 3048.
doi: 10.1093/bioinformatics/btw354 |
24 |
WILTON R , SZALAY A S . Performance optimization in DNA short-read alignment[J]. Bioinformatics, 2022, 38 (8): 2081- 2087.
doi: 10.1093/bioinformatics/btac066 |
25 |
DANECEK P , BONFIELD J K , LIDDLE J , et al. Twelve years of SAMtools and BCFtools[J]. GigaScience, 2021, 10 (2): giab008.
doi: 10.1093/gigascience/giab008 |
26 |
LIU W F , WU S Y , LIN Q , et al. RGAAT: A Reference-based genome assembly and annotation tool for new genomes and upgrade of known genomes[J]. Genomics Proteomics Bioinformatics, 2018, 16 (5): 373- 381.
doi: 10.1016/j.gpb.2018.03.006 |
27 |
RICCIO C , JANSEN M L , GUO L , et al. Variant effect predictors: a systematic review and practical guide[J]. Hum Genet, 2024, 143 (5): 625- 634.
doi: 10.1007/s00439-024-02670-5 |
28 | 闫碧瑶. 柴达木黄牛的群体基因组学研究[D]. 兰州: 兰州大学, 2019. |
YAN B Y. Population genomics of Chaidamu cattle[D]. Lanzhou: Lanzhou University, 2019. (in Chinese) | |
29 |
SANGER F , NICKLEN S , COULSON A R . DNA sequencing with chain-terminating inhibitors[J]. Proc Natl Acad Sci U S A, 1977, 74 (12): 5463- 5467.
doi: 10.1073/pnas.74.12.5463 |
30 |
MAXAM A M , GILBERT W . A new method for sequencing DNA[J]. Proc Natl Acad Sci U S A, 1977, 74 (2): 560- 564.
doi: 10.1073/pnas.74.2.560 |
31 |
喻赫, 李睿, 伊旭东, 等. 基因组测序技术在家畜肉质改良中的应用研究进展[J]. 农业生物技术学报, 2024, 32 (2): 471- 483.
doi: 10.3969/j.issn.1674-7968.2024.02.018 |
YU H , LI R , YIN X D , et al. Research progress on application of genome sequencing in the meat quality improvement in domestic animals[J]. Journal of Agricultural Biotechnology, 2024, 32 (2): 471- 483.
doi: 10.3969/j.issn.1674-7968.2024.02.018 |
|
32 | GOODWIN S , MCPHERSON J D , MCCOMBIE W R . Coming of age: ten years of next-generation sequencing technologies[J]. Nat Rev Genet, 2016, 17 (6): 333- 351. |
33 |
UHLEN M , QUAKE S R . Sequential sequencing by synthesis and the next-generation sequencing revolution[J]. Trends Biotechnol, 2023, 41 (12): 1565- 1572.
doi: 10.1016/j.tibtech.2023.06.007 |
34 | POPOVA L , CARABETTA V J . The use of next-generation sequencing in personalized medicine[J]. Methods Mol Biol, 2025, 2866, 287- 315. |
35 |
SCARANO C , VENERUSO I , DE SIMONE R R , et al. The third-generation sequencing challenge: novel insights for the omic sciences[J]. Biomolecules, 2024, 14 (5): 568.
doi: 10.3390/biom14050568 |
36 |
LIU X Y , ZHENG J Y , DING J L , et al. When livestock genomes meet third-generation sequencing technology: from opportunities to applications[J]. Genes, 2024, 15 (2): 245.
doi: 10.3390/genes15020245 |
37 |
LIU A Q , LIU X J , LU Y W , et al. Two chronically misdiagnosed patients infected with Nocardia cyriacigeorgica accurately diagnosed by whole genome resequencing[J]. Front Cell Infect Microbiol, 2022, 12, 1032669.
doi: 10.3389/fcimb.2022.1032669 |
38 |
LIU H M , FAN Z Y , TONG N , et al. The exploration of high production of tiancimycins in Streptomyces sp. CB03234-S revealed potential influences of universal stress proteins on secondary metabolisms of streptomycetes[J]. Microb Cell Fact, 2024, 23 (1): 337.
doi: 10.1186/s12934-024-02613-9 |
39 |
CHEN X , GUO H Y , ZHANG Q Y , et al. Whole-genome resequencing of wild and cultivated cannabis reveals the genetic structure and adaptive selection of important traits[J]. BMC Plant Biol, 2022, 22 (1): 371.
doi: 10.1186/s12870-022-03744-0 |
40 |
DE SOUZA I P , DE AZEVEDO B R , COELHO A S G , et al. Whole-genome resequencing of common bean elite breeding lines[J]. Sci Rep, 2023, 13 (1): 12721.
doi: 10.1038/s41598-023-39399-6 |
41 |
LI L L , QUAN J Q , GAO C X , et al. Whole-genome resequencing to unveil genetic characteristics and selection signatures of specific pathogen-free ducks[J]. Poult Sci, 2023, 102 (7): 102748.
doi: 10.1016/j.psj.2023.102748 |
42 |
SATAM H , JOSHI K , MANGROLIA U , et al. Next-generation sequencing technology: current trends and advancements[J]. Biology, 2023, 12 (7): 997.
doi: 10.3390/biology12070997 |
43 |
HU T S , CHITNIS N , MONOS D , et al. Next-generation sequencing technologies: An overview[J]. Hum Immunol, 2021, 82 (11): 801- 811.
doi: 10.1016/j.humimm.2021.02.012 |
44 |
CHEN N B , CAI Y D , CHEN Q M , et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia[J]. Nat Commun, 2018, 9 (1): 2337.
doi: 10.1038/s41467-018-04737-0 |
45 |
WEI X D , LI S , YAN H X , et al. Unraveling genomic diversity and positive selection signatures of Qaidam cattle through whole-genome re-sequencing[J]. Anim Genet, 2024, 55 (3): 362- 376.
doi: 10.1111/age.13417 |
46 | 马钧, 樊安平, 王武生, 等. 全基因组重测序解析秦川牛保种群遗传多样性和遗传结构[J]. 遗传, 2023, 45 (7): 602- 616. |
MA J , FAN A P , WANG W S , et al. Analysis of genetic diversity and genetic structure of Qinchuan cattle conservation population using whole-genome resequencing[J]. Hereditas(Beijing), 2023, 45 (7): 602- 616. | |
47 |
JIN L L , ZHANG B Z , LUO J L , et al. Genomics, origin and selection signals of Loudi cattle in central Hunan[J]. Biology, 2022, 11 (12): 1775.
doi: 10.3390/biology11121775 |
48 |
CHEN Q M , ZHAN J X , SHEN J F , et al. Whole-genome resequencing reveals diversity, global and local ancestry proportions in Yunling cattle[J]. J Anim Breed Genet, 2020, 137 (6): 641- 650.
doi: 10.1111/jbg.12479 |
49 |
XU L , ZHANG Y Y , GUO Y , et al. Whole-genome resequencing uncovers diversity and selective sweep in Kazakh cattle[J]. Anim Genet, 2024, 55 (3): 377- 386.
doi: 10.1111/age.13425 |
50 | 戎艳花, 贾雪纯, 李鹏飞, 等. 晋南牛遗传结构特征及选择信号分析[J]. 中国畜牧兽医, 2024, 51 (1): 160- 171. |
RONG Y H , JIA X C , LI P F , et al. Analysis of genetic structure characteristics and selection signal in Jinnan cattle[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51 (1): 160- 171. | |
51 |
ZHANG Y , WEI Z T , ZHANG M , et al. Population structure and selection signal analysis of Nanyang cattle based on whole-genome sequencing data[J]. Genes, 2024, 15 (3): 351.
doi: 10.3390/genes15030351 |
52 |
CHEN J , ZHANG L L , GAO L T , et al. Population structure and genetic diversity of Yunling cattle determined by whole-genome resequencing[J]. Genes, 2023, 14 (12): 2141.
doi: 10.3390/genes14122141 |
53 |
LIU Z , SUN H , LAI W , et al. Genome-wide re-sequencing reveals population structure and genetic diversity of Bohai Black cattle[J]. Anim Genet, 2022, 53 (1): 133- 136.
doi: 10.1111/age.13155 |
54 | 张岩, 魏稚彤, 虎业浩, 等. 基于全基因组重测序评估郏县红牛保种群遗传多样性与群体结构[J]. 中国畜牧兽医, 2024, 51 (7): 2933- 2942. |
ZHANG Y , WEI Z T , HU Y H , et al. genetic diversity and population structure analysis of Jiaxian red cattle based on whole genome sequencing[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51 (7): 2933- 2942. | |
55 |
XU L , ZHOU K Q , HUANG X X , et al. Whole-genome resequencing provides insights into the diversity and adaptation to desert environment in Xinjiang Mongolian cattle[J]. BMC genomics, 2024, 25 (1): 176.
doi: 10.1186/s12864-024-10084-w |
56 |
SONG X Y , YAO Z , ZHANG Z J , et al. Whole-genome sequencing reveals genomic diversity and selection signatures in Xia 'nan cattle[J]. BMC Genomics, 2024, 25 (1): 559.
doi: 10.1186/s12864-024-10463-3 |
57 | 陈宁博. 全基因组重测序分析揭示东亚家牛的祖先与多重适应性基因渗入[D]. 杨凌: 西北农林科技大学, 2019. |
CHEN N B. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle East Asia[D]. Yangling: Northwest A & F University, 2019. (in Chinese) | |
58 | 张俸伟. 中国地方黄牛大规模基因组遗传变异与参考面板构建[D]. 杨凌: 西北农林科技大学, 2024. |
ZHANG F W. Large-scale genetic variation and reference panel construction of Chinese cattle[D]. Yangling: Northwest A & F University, 2024. (in Chinese) | |
59 | 刘鑫锋. 全基因组重测序分析揭示中国3个濒危地方黄牛品种的适应性[D]. 杨凌: 西北农林科技大学, 2020. |
LIU X F. Whole genome resequencing reveals adaptability of three endangered local cattle breeds in China[D]. Yangling: Northwest A & F University, 2020. (in Chinese) | |
60 | 吕阳. 青藏高原黄牛基因组遗传多样性与高海拔环境适应性研究[D]. 杨凌: 西北农林科技大学, 2024. |
LYU Y. Genetic diversity and adaptability to high altitude environment of cattle on tibetan plateau [D]. Yangling: Northwest A & F University, 2024. (in Chinese) | |
61 | 马晓慧. 中缅边境地区3个黄牛品种全基因组遗传多样性研究[D]. 杨凌: 西北农林科技大学, 2023. |
MA X H. Whole-genome genetic diversity of three cattle breeds at the China-Burma border area [D]. Yangling: Northwest A & F University, 2023. (in Chinese) | |
62 |
LYU Y , REN Y X , QU K X , et al. Local ancestry and selection in admixed Sanjiang cattle[J]. Stress Biol, 2023, 3 (1): 30.
doi: 10.1007/s44154-023-00101-5 |
63 | 许星龙. 贵州黄牛全基因组遗传多样性与选择信号分析[D]. 杨凌: 西北农林科技大学, 2024. |
XU X L. Genomic genetic diversity and selection signal analysis of Guizhou cattle[D]. Yangling: Northwest A & F University, 2024. (in Chinese) | |
64 |
CHENG H J , LYU Y , LIU Z A , et al. A whole-genome scan revealed genomic features and selection footprints of Mengshan cattle[J]. Genes, 2024, 15 (9): 1113.
doi: 10.3390/genes15091113 |
65 | 魏旭东, 徐东辉, 曹萍, 等. 柴达木牛父系遗传多样性、群体结构及与中国北方部分黄牛品种的遗传关系[J]. 浙江大学学报(农业与生命科学版), 2024, 50 (6): 942- 953. |
WEI X D , XU D H , CAO P , et al. Paternal genetic diversity and population structure of Qaidam cattle and its genetic relationship with other yellow cattle breeds in northern China[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2024, 50 (6): 942- 953. | |
66 |
XU L X , WANG X , WU J D , et al. Genetic variation analysis of Guanling cattle based on whole-genome resequencing[J]. Anim Biosci, 2024, 37 (12): 2044- 2053.
doi: 10.5713/ab.24.0181 |
67 |
GUAN X W , ZHAO S P , XIANG W X , et al. Genetic diversity and selective signature in Dabieshan cattle revealed by whole-genome resequencing[J]. Biology, 2022, 11 (9): 1327.
doi: 10.3390/biology11091327 |
68 | 贾雪纯, 戎艳花, 朱芷葳, 等. 全基因组重测序探究晋南牛优势性状的分子基础[J]. 中国畜牧兽医, 2024, 51 (1): 1- 10. |
JIA X C , RONG Y H , ZHU Z W , et al. Whole-genome resequencing reveals genetic potential for phenotypic merit in Jinnan cattle[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51 (1): 1- 10. | |
69 | 谷明娟, 罗荣松, 高丽, 等. 全基因组重测序技术揭示蒙古牛无角性状变异[J]. 农业生物技术学报, 2020, 28 (11): 1960- 1969. |
GU M J , LUO R S , GAO L , et al. Whole-genome resequencing reveals variant associated with polled traits in Mongolia cattle(Bos Taurus)[J]. Journal of Agricultural Biotechnology, 2020, 28 (11): 1960- 1969. | |
70 |
LUO X Y , LI J B , XIAO C T , et al. Whole-Genome resequencing of Xiangxi cattle identifies genomic diversity and selection signatures[J]. Front Genet, 2022, 13, 816379.
doi: 10.3389/fgene.2022.816379 |
71 |
YANG H Y , YUE B L , YANG Y , et al. Distribution of copy number variation in SYT11 gene and its association with growth conformation traits in Chinese cattle[J]. Biology, 2022, 11 (2): 223.
doi: 10.3390/biology11020223 |
72 |
张涛, 李佳芪, 胥磊, 等. 基于全基因组重测序数据的新疆褐牛基因组结构变异检测及群体结构分析[J]. 畜牧兽医学报, 2024, 55 (8): 3427- 3435.
doi: 10.11843/j.issn.0366-6964.2024.08.016 |
ZHANG T , LI J X , XU L , et al. Detection and population structure analysis of genomic structural variation in Xinjiang brown cattle based on whole genome resequencing Data[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (8): 3427- 3435.
doi: 10.11843/j.issn.0366-6964.2024.08.016 |
|
73 |
MA X H , CHENG H J , LIU Y K , et al. Assessing genomic diversity and selective pressures in Bohai black cattle using whole-genome sequencing data[J]. Animals, 2022, 12 (5): 665.
doi: 10.3390/ani12050665 |
74 |
NAJI M M , JIANG Y F , UTSUNOMIYA Y T , et al. Favored single nucleotide variants identified using whole genome re-sequencing of Austrian and Chinese cattle breeds[J]. Front Genet, 2022, 13, 974787.
doi: 10.3389/fgene.2022.974787 |
75 |
ZHOU H C , HUANG B Z , QU K X , et al. The distribution of four missense mutations in SPTBN5 gene across native Chinese breeds[J]. Anim Biotechnol, 2022, 33 (4): 796- 800.
doi: 10.1080/10495398.2020.1831521 |
76 |
SHEN J F , HANIF Q , CAO Y , et al. Whole genome scan and selection signatures for climate adaption in Yanbian cattle[J]. Front Genet, 2020, 11, 94.
doi: 10.3389/fgene.2020.00094 |
77 | 唐建华, 陈晓英, 宋天增, 等. 西藏黄牛种质资源保护与利用研究[J]. 中国牛业科学, 2016, 42 (3): 48- 51. |
TANG J H , CHEN X Y , SONG T Z , et al. The research on conservation and utility of Tibet cattle germplasm resources[J]. China Cattle Science, 2016, 42 (3): 48- 51. | |
78 | 邓兵, 晋美旺杰, 任增帮, 等. 基于RAD-seq简化基因组测序的西藏黄牛遗传多样性研究[J]. 江苏农业科学, 2021, 49 (16): 153- 157. |
DENG B , JINMEI W J , REN Z B , et al. Study on genetic diversity of Tibetan cattle based on RAD-seq simplified genome sequencing[J]. Jiangsu Agricultural Sciences, 2021, 49 (16): 153- 157. | |
79 | 武秀香, 施雪奎, 吴海涛, 等. 我国南方黄牛遗传资源及其利用探讨[J]. 中国牛业科学, 2010, 36 (5): 1- 4. |
WU X X , SHI X K , WU H T , et al. Genetic resources and utilization of Chinese cattle in south China[J]. China Cattle Science, 2010, 36 (5): 1- 4. | |
80 | 王凯悦. 云南7个地方黄牛品种全基因组遗传多样性与起源研究[D]. 杨凌: 西北农林科技大学, 2022. |
WANG K Y. Whole-genome genetic diversity and origin of 7 native cattle breeds in Yunnan[D]. Yangling: Northwest A & F University, 2022. (in Chinese) | |
81 | 吴慧, 李世元, 蒋俊明, 等. 基于全基因组重测序的海南黄牛群体遗传多样性分析及热适应相关候选基因筛选[J]. 南方农业学报, 2024, 55 (12): 3707- 3717. |
WU H , LI S Y , JIANG J M , et al. Genetic diversity of Hainan cattle population based on whole genome resequencing and screening of candidate genes related to heat adaptation[J]. Journal of Southern Agriculture, 2024, 55 (12): 3707- 3717. | |
82 | 王宏浩, 王曦, 车雷杰, 等. 晋南牛的保种、选育与利用[J]. 中国畜禽种业, 2023, 19 (7): 97- 101. |
WANG H H , WANG X , CHE L J , et al. Conservation, breeding and utilization of Jinnan cattle[J]. The Chinese Livestock and Poultry Breeding, 2023, 19 (7): 97- 101. | |
83 | 胡道俊, 贵军, 兰忠, 等. 枣北牛种质资源保护利用研究[J]. 农业工程技术, 2023, 43 (19): 85+87. |
HU D J , GUI J , LAN Z , et al. Study on the protection and utilization of Zaobei cattle germplasm resources[J]. Agricultural Engineering Technology, 2023, 43 (19): 85+87. | |
84 | 张聪聪, 李轩宇, 刘洪亮, 等. 吉林省延边牛产业发展现状、趋势及建议[J]. 吉林畜牧兽医, 2024, 45 (12): 148- 150. |
ZHANG C C , LI X Y , LIU H L , et al. The development status, trends and suggestions of Yanbian cattle industry in Jilin Province[J]. Jilin Animal Husbandry and Veterinary Medicine, 2024, 45 (12): 148- 150. | |
85 | 刘艺, 九麦扎西, 勒毛才让, 等. 我国牛种质资源现状与保护的研究进展[J]. 中国畜禽种业, 2024, 20 (10): 105- 114. |
LIU Y , JIUMAI Z X , LEMAO C R , et al. Progress on status and conservation of bos species germplasm resources in China[J]. The Chinese Livestock and Poultry Breeding, 2024, 20 (10): 105- 114. | |
86 | 王成高, 罗仙华. 文山牛遗传资源保护现状及开发利用思路[J]. 云南畜牧兽医, 2023 (5): 19- 21. |
WANG C G , LUO X H . protection status and development and utilization ideas of Wenshan cattle genetic resources[J]. Yunnan Journal of Animal Science and Veterinary Medicine, 2023 (5): 19- 21. | |
87 |
刘思宇, 张曼, 张岩, 等. 基于重测序数据评估南阳牛保种效果[J]. 畜牧兽医学报, 2024, 55 (9): 3876- 3886.
doi: 10.11843/j.issn.0366-6964.2024.09.013 |
LIU S Y , ZHANG M , ZHANG Y , et al. Evaluation of the conservation effect in Nanyang cattle based on resequencing data[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (9): 3876- 3886.
doi: 10.11843/j.issn.0366-6964.2024.09.013 |
|
88 | 杨伟杰. 海南黄牛群体遗传多样性及全基因组选择信号研究[D]. 海口: 海南大学, 2023. |
YANG W J. Study on genetic diversity and whole genome selection signals of Hainan cattle population[D]. Haikou: Hainan University, 2023. (in Chinese) | |
89 | SUN W Q , REN H J , LI M Z , et al. Genomic insights and conservation priorities for Kongshan cattle: A whole-genome resequencing approach[J]. Animals, 2024, 14 (21): 3056. |
90 | 侯丽娜, 武泽文, 张魁, 等. 延边黄牛保种工作现状、存在问题与对策[J]. 吉林农业大学学报, 2023, 45 (4): 396- 401. |
HOU L N , WU Z W , ZHANG K , et al. Present situation, existing problems and countermeasures of Yanbian yellow cattle breed conservation[J]. Journal of Jilin Agricultural University, 2023, 45 (4): 396- 401. | |
91 | 陈坤青, 孙斌, 阿云嘎, 等. 阿拉善蒙古小黄牛保护与开发利用前景分析[J]. 新农民, 2024 (2): 108- 110. |
CHEN K Q , SUN B , AYUNGA , et al. Analysis on the prospect of protection and development and utilization of Alashan Mongolian cattle[J]. New Farmers, 2024 (2): 108- 110. | |
92 | 农业农村部推动落实新一轮全国畜禽遗传改良计划[J]. 畜牧业环境, 2023, (3): 3-4. |
The Ministry of Agriculture and Rural Affairs has promoted the implementation of a new round of national livestock and poultry genetic improvement plan[J]. Animal Industry and Environment, 2023, (3): 3-4. (in Chinese) | |
93 | 陈静. 基于全基因组重测序的鲂属鱼类群体遗传学研究[D]. 武汉: 华中农业大学, 2022. |
CHEN J. Population genetics of Megalobrama species based on the whole genome re-sequencing[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese) | |
94 | BRAVO-EGANA V , SANDERS H , CHITNIS N . New challenges, new opportunities: Next generation sequencing and its place in the advancement of HLA typing[J]. Hum Immunol, 2021, 82 (7): 478- 487. |
95 | 朱欠华. 一种多组学数据联合分析方法的构建[D]. 昆明: 昆明理工大学, 2024. |
ZHU Q H. Construction of a multi-omics joint analysis method[D]. Kunming: Kunming University of Science and Technology, 2024. (in Chinese) | |
96 | AGGARWAL V , BANDAY A Z , JINDAL A K , et al. Recent advances in elucidating the genetics of common variable immunodeficiency[J]. Genes Dis, 2020, 7 (1): 26- 37. |
[1] | 孙国欣, 李蕴华, 赛音, 郭文华, 赵艳红, 张满新, 刘佳森. 湖羊群体结构分析与经济性状相关选择信号检测[J]. 畜牧兽医学报, 2025, 56(5): 2168-2181. |
[2] | 姚婷婷, 李昊, 阎卉萱, 曹一凡, 次仁罗布, 索朗曲吉, 尼玛仓决, 赵丽, 旦增洛桑, 斯朗旺姆, 巴桑珠扎, 陈宁博. 西藏自治区10个黄牛群体的mtDNA遗传多样性与母系起源研究[J]. 畜牧兽医学报, 2025, 56(5): 2194-2202. |
[3] | 王浩宇, 马克岩, 李讨讨, 栗登攀, 赵箐, 马友记. 基于简化基因组测序评估小骨山羊群体遗传多样性和群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1170-1179. |
[4] | 胡鑫, 游伟, 姜富贵, 成海建, 孙志刚, 宋恩亮. 基于全基因组重测序分析西门塔尔牛遗传多样性与群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1189-1202. |
[5] | 刘思宇, 张曼, 张岩, 魏稚彤, 祁兴磊, 高腾云, 刘贤, 梁栋, 付彤. 基于重测序数据评估南阳牛保种效果[J]. 畜牧兽医学报, 2024, 55(9): 3876-3886. |
[6] | 张涛, 李佳芪, 胥磊, 王丹, 张梦华, 张涛, 闫梦婕, 王玮韬, 范守民, 黄锡霞. 基于全基因组重测序数据的新疆褐牛基因组结构变异检测及群体结构分析[J]. 畜牧兽医学报, 2024, 55(8): 3427-3435. |
[7] | 王婷, 张元庆, 闫益波, 上官明军, 郭宏宇, 王志武. “特藏寒羊”群体遗传结构分析与选择信号的对比分析[J]. 畜牧兽医学报, 2024, 55(7): 2913-2926. |
[8] | 王亚鑫, 王璟, 田学凯, 杨公社, 于太永. 多组学技术在畜禽重要经济性状研究中的应用[J]. 畜牧兽医学报, 2024, 55(5): 1842-1853. |
[9] | 屠芸, 曾雅楠, 张蒸豪, 洪瑞, 王震, 吴平, 周泽洋, 叶艺茹, 杜亚楠, 左福元, 张龚炜. 保种场涪陵水牛及西南地区水牛品种间遗传结构与ROH分析[J]. 畜牧兽医学报, 2024, 55(5): 1989-1998. |
[10] | 曹玉珠, 邢雨欣, 马乘霖, 管宏波, 贾其辉, 康相涛, 田亚东, 李转见, 刘小军, 李红. 鸡FGF6基因生物学特性及其多态性与经济性状的关联分析[J]. 畜牧兽医学报, 2024, 55(4): 1536-1550. |
[11] | 宋科林, 闫尊强, 王鹏飞, 程文昊, 李杰, 白雅琴, 孙国虎, 滚双宝. 基于SNP芯片分析徽县青泥黑猪遗传多样性和遗传结构[J]. 畜牧兽医学报, 2024, 55(3): 995-1006. |
[12] | 任钰为, 陈星, 林燕宁, 黄潇仙, 洪玲玲, 王峰, 孙瑞萍, 张艳, 刘海隆, 郑心力, 晁哲. 基于全基因组重测序研究文昌鸡产蛋性能的影响因素[J]. 畜牧兽医学报, 2024, 55(2): 502-514. |
[13] | 程昕琰, 王诗媛, 吉叶标, 黄思秀, 杨杰, 孟繁明, 张茂, 蔡更元, 刘琅青. 基于50K SNP芯片评估广东省四类地方猪保种群体的遗传结构[J]. 畜牧兽医学报, 2024, 55(12): 5464-5477. |
[14] | 徐扩卫, 李卓辉, 冷堂健, 熊宝, 周杰珑, 郭盘江, 王禹, 陈粉粉. 基于全基因组重测序SNP分析宁蒗高原鸡保种群的群体遗传多样性和群体遗传结构[J]. 畜牧兽医学报, 2024, 55(12): 5498-5510. |
[15] | 梁慧丽, 解玉静, 司博文, 王桂英, 姜运良, 曹贵玲. 基于全基因组重测序分析大尾寒羊基因组变异特征和群体结构[J]. 畜牧兽医学报, 2024, 55(11): 4968-4979. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||