畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (12): 5452-5463.doi: 10.11843/j.issn.0366-6964.2024.12.012
戴超辉1(), 崔乐康2, 李辉1, 赵为民1, 付言峰1, 李碧侠1, 王学敏1, 廖超1, 陈彦羽3, 包文斌2,*(
), 程金花1,*(
)
收稿日期:
2024-06-18
出版日期:
2024-12-23
发布日期:
2024-12-27
通讯作者:
包文斌,程金花
E-mail:chdai@jaas.ac.cn;wbbao@yzu.edu.cn;jhcheng@jaas.ac.cn
作者简介:
戴超辉(1993-),女,湖南新化人,博士,助理研究员,主要从事猪遗传育种与繁殖研究,E-mail: chdai@jaas.ac.cn
基金资助:
DAI Chaohui1(), CUI Lekang2, LI Hui1, ZHAO Weimin1, FU Yanfeng1, LI Bixia1, WANG Xuemin1, LIAO Chao1, CHEN Yanyu3, BAO Wenbin2,*(
), CHENG Jinhua1,*(
)
Received:
2024-06-18
Online:
2024-12-23
Published:
2024-12-27
Contact:
BAO Wenbin, CHENG Jinhua
E-mail:chdai@jaas.ac.cn;wbbao@yzu.edu.cn;jhcheng@jaas.ac.cn
摘要:
旨在明确苏山猪群体和巴克夏猪群体的遗传变异位点和多态信息,本研究首先对43个苏山猪样本和21个巴克夏猪样本进行DNA提取,然后利用“中芯一号”50K SNP芯片对DNA的SNP位点进行检测;使用Plink软件对SNP位点进行主成分分析;使用DetectRUNS软件包对样本进行全基因组ROH检测;选用3种方法(ROH、CLR和iHS)对选择信号进行分析。本研究总共鉴定到苏山猪42 282个SNPs位点和巴克夏猪27 718个SNPs位点。其中,苏山猪和巴克夏猪均被划分为3个家系。本研究在苏山猪中共检测到2 071个ROH片段,FROH平均值为0.096。巴克夏猪中共检测到1 853个ROH片段,FROH平均值为0.199。在苏山猪和巴克夏猪群体中分别检测到4个和40个高频ROH区域,分别注释到8个和103个基因,通过富集分析鉴定了50个显著的候选基因。另外,通过ROH、CLR和iHS共3种选择信号分析方法,对苏山猪和巴克夏猪的选择信号区域进行了鉴定,发现有42个基因可能受到选择。本研究初步揭示了苏山猪和巴克夏猪的基因组SNP图谱,并通过高频ROH分析和选择信号检测鉴定到一些可能影响猪的生长发育、肉质、营养和一般抗病力的基因,为苏山猪和巴克夏猪的选育利用提供了理论基础。
中图分类号:
戴超辉, 崔乐康, 李辉, 赵为民, 付言峰, 李碧侠, 王学敏, 廖超, 陈彦羽, 包文斌, 程金花. 苏山猪和巴克夏猪全基因组ROH检测和选择信号分析[J]. 畜牧兽医学报, 2024, 55(12): 5452-5463.
DAI Chaohui, CUI Lekang, LI Hui, ZHAO Weimin, FU Yanfeng, LI Bixia, WANG Xuemin, LIAO Chao, CHEN Yanyu, BAO Wenbin, CHENG Jinhua. Whole Genome ROH Detection and Selection Signal Analysis in Sushan Pigs and Berkshire Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5452-5463.
表 1
高频ROH区域基因富集分析结果"
功能分类 Functional classification | 功能注释号 Functional annotation | 功能描述 Functional description | 基因个数 Genes number | 基因名称 Genes name |
GO-BP | GO: 0051129 | 细胞成分组织的负调控 | 9 | SEMA6D, TFIP11, KREMEN1, LIMK2, MAPRE1, RAD21, IGF1, NFATC4, RDX |
GO-BP | GO: 0031345 | 细胞突起组织负调控 | 4 | KREMEN1, LIMK2, NFATC4, SEMA6D |
GO-BP | GO: 0043254 | 蛋白质复合物组装的调控 | 6 | TFIP11, DRG1, MAPRE1, RASA1, STXBP6, RDX |
GO-BP | GO: 0032091 | 蛋白质结合的负调控 | 3 | TFIP11, PIN1, NFATC4 |
GO-BP | GO: 0097435 | 超分子纤维组织 | 8 | CAPN3, LIMK2, DRG1, MAPRE1, RASA1, EXT1, RIPK3, RDX |
GO-CC | GO: 0070603 | SWI/SNF超家族型复合体 | 3 | INO80, SMARCB1, BAZ1A |
GO-CC | GO: 1904949 | 酶复合体 | 3 | INO80, SMARCB1, BAZ1A |
GO-CC | GO: 0000228 | 核染色体 | 4 | INO80, SMARCB1, BRMS1L, BAZ1A |
GO-CC | GO: 0043025 | 神经元细胞体 | 4 | BRINP3, KCNK1, CPNE5, KREMEN1 |
GO-CC | GO: 0044297 | 细胞体 | 4 | BRINP3, KCNK1, CPNE5, KREMEN1 |
GO-MF | GO: 0019957 | C-C趋化因子结合 | 2 | XCR1, CCR3 |
GO-MF | GO: 0045309 | 蛋白质磷酸化氨基酸结合 | 2 | PIN1, RASA1 |
GO-MF | GO: 0042578 | 磷酸酯水解酶活性 | 5 | NT5E, PFKFB4, MTMR3, PDE4A, NAPEPLD |
GO-MF | GO: 0019956 | 趋化因子结合 | 2 | XCR1, CCR3 |
GO-MF | GO: 0030234 | 酶调节活性 | 9 | CAPN3, COL7A1, SGSM1, HPS4, ANGPT4, RASA1, CAST, MBIP, RIPK3 |
KEGG pathway | ssc04070 | 磷脂酰肌醇信号系统 | 6 | PPIP5K1, SACM1L, MTMR3, PIP5K1C, ITPR3, IP6K3 |
KEGG pathway | ssc00760 | 烟酸和烟酰胺代谢 | 3 | NT5E, NAMPT, NMNAT2 |
KEGG pathway | ssc03250 | 病毒生命周期-HIV-1 | 3 | SMARCB1, PIN1, ELL2 |
KEGG pathway | ssc03082 | ATP依赖性染色质重塑 | 4 | INO80, SMARCB1, MBD3, BAZ1A |
KEGG pathway | ssc04360 | Axon引导 | 5 | SEMA6D, LIMK2, EFNA2, RASA1, NFATC4 |
表 2
选择信号基因组区域的基因清单"
染色体 Chromosome | 分析方法 Analysis method | 基因名称 Genes name |
1 | CLR, iHS | PCMT1 |
1 | ROH, iHS | COL9A1, SEMA6D, NT5E, INO80, CEP162, KCNQ5 |
4 | CLR, iHS | SNTB1, CRTC2, ZFAT, LOC102166862 |
4 | ROH, iHS | EXT1, DECR1, SDHC, RAD21 |
6 | CLR, iHS | CA5A, PRELID3A, LOC110261323, LOC100514110 |
6 | ROH, iHS | NDUFS5, SLC1A5, C5AR1 |
8 | ROH, iHS | TDO2, DMP1, MEPE, PGRMC2 |
9 | ROH, iHS | SLC36A4, RDX, ZC3H12C, FDX1, NAPEPLD, NAMPT |
13 | CLR, iHS | NEK4, LAMP3, SEC22A |
13 | ROH, iHS | FYCO1, XCR1, COL7A1, CCR3, PFKFB4 |
14 | ROH, iHS | MYL2, P2RX7 |
1 |
STONEKING M . Single nucleotide polymorphisms.From the evolutionary past[J]. Nature, 2001, 409 (6822): 821- 822.
doi: 10.1038/35057279 |
2 | 张瑞锋, 黄珍, 谢水华, 等. 猪全基因组选择技术发展现状和应用前景[J]. 中国畜牧杂志, 2023, 59 (10): 21- 29. |
ZHANG R F , HUANG Z , XIE S H , et al. The development status and application prospect of genomic selection for pigs[J]. Chinese Journal of Animal Science, 2023, 59 (10): 21- 29. | |
3 | 邱奥, 王雪, 孟庆利, 等. 3款猪50K SNP芯片基因型填充效果研究[J]. 中国畜牧杂志, 2021, 57 (S1): 33- 38. |
QIU A , WANG X , MENG Q L , et al. Study on genotype imputation performance of three porcine50K SNP chips[J]. Chinese Journal of Animal Science, 2021, 57 (S1): 33- 38. | |
4 |
龙熙, 吴平先, 潘红梅, 等. 基于SNP芯片的内江猪群体遗传结构分析[J]. 中国畜牧杂志, 2024,
doi: 10.19556/j.0258-7033.20230914-04 |
LONG X , WU P X , PAN H M , et al. Genetic structure analysis of Neijiang Pig population based on SNP chip[J]. Chinese Journal of Animal Science, 2024,
doi: 10.19556/j.0258-7033.20230914-04 |
|
5 | 陶璇, 杨雪梅, 梁艳, 等. 基于SNP芯片的丫杈猪保种群体遗传结构研究[J]. 畜牧兽医学报, 2023, 54 (6): 2308- 2319. |
TAO X , YANG X M , LIANG Y , et al. Analysis of genetic structure of conservation population in Yacha Pig based on SNP chip[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (6): 2308- 2319. | |
6 | 宋科林, 闫尊强, 王鹏飞, 等. 基于SNP芯片分析徽县青泥黑猪遗传多样性和遗传结构[J]. 畜牧兽医学报, 2024, 55 (3): 995- 1006. |
SONG K L , YAN Z Q , WANG P F , et al. Analysis on genetic diversity and genetic structure based on SNP chips of Huixian Qingni Black pig[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 995- 1006. | |
7 | 何晓锦, 郭建华, 刘洪江, 等. 里岔黑猪基因组选择信号检测与分析[J]. 中国畜牧杂志, 2024, 60 (4): 131- 135. |
HE X J , GUO J H , LIU H J , et al. Detection and analysis of genomic selection signals in Licha Black Pigs[J]. Chinese Journal of Animal Science, 2024, 60 (4): 131- 135. | |
8 | 任守文, 李碧侠, 葛云山, 等. 苏山猪选育研究[J]. 中国畜牧杂志, 2020, 56 (11): 47- 51. |
REN S W , LI B X , GE Y S , et al. Study on breeding of Sushan Pig[J]. Chinese Journal of Animal Science, 2020, 56 (11): 47- 51. | |
9 |
ZHAO F P , XIE R , FANG L Z , et al. Analysis of 206 whole-genome resequencing reveals selection signatures associated with breed-specific traits in Hu Sheep[J]. Evol Appl, 2024, 17 (6): e13697.
doi: 10.1111/eva.13697 |
10 |
TAMURA K , STECHER G , KUMAR S . MEGA11:molecular evolutionary genetics analysis version 11[J]. Mol Biol Evol, 2021, 38 (7): 3022- 3027.
doi: 10.1093/molbev/msab120 |
11 |
DANECEK P , AUTON A , ABECASIS G , et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27 (15): 2156- 2158.
doi: 10.1093/bioinformatics/btr330 |
12 |
WANG K , LI M Y , HAKONARSON H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010, 38 (16): e164.
doi: 10.1093/nar/gkq603 |
13 |
DEGIORGIO M , HUBER C D , HUBISZ M J , et al. SweepFinder2:increased sensitivity, robustness and flexibility[J]. Bioinformatics, 2016, 32 (12): 1895- 1897.
doi: 10.1093/bioinformatics/btw051 |
14 |
GAUTIER M , VITALIS R . rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure[J]. Bioinformatics, 2012, 28 (8): 1176- 1177.
doi: 10.1093/bioinformatics/bts115 |
15 | 曾浩南, 钟展明, 徐志婷, 等. 3款猪50K SNP芯片基因型填充至序列数据的效果评估[J]. 华南农业大学学报, 2022, 43 (4): 10- 15. |
ZENG H N , ZHONG Z M , XU Z T , et al. Evaluation on genotype imputation performance of three porcine50K SNP chips from chip data to sequencing data[J]. Journal of South China Agricultural University, 2022, 43 (4): 10- 15. | |
16 |
GORSSEN W , MEYERMANS R , JANSSENS S , et al. A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species[J]. Genet Sel Evol, 2021, 53 (1): 2.
doi: 10.1186/s12711-020-00599-7 |
17 |
SHI L Y , WANG L G , LIU J X , et al. Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a Large White Pig population[J]. J Anim Sci Biotechnol, 2020, 11, 46.
doi: 10.1186/s40104-020-00447-0 |
18 |
LIU J X , SHI L Y , LI Y , et al. Estimates of genomic inbreeding and identification of candidate regions that differ between Chinese indigenous sheep breeds[J]. J Anim Sci Biotechnol, 2021, 12 (1): 95.
doi: 10.1186/s40104-021-00608-9 |
19 |
DI GREGORIO P , PERNA A , DI TRANA A , et al. Identification of ROH islands conserved through generations in pigs belonging to the Nero Lucano breed[J]. Genes (Basel), 2023, 14 (7): 1503.
doi: 10.3390/genes14071503 |
20 | 韩云珍, 阳文攀, 洪渊, 等. 基于芯片数据估计不同方法对槐猪近交系数的影响[J]. 畜牧兽医学报, 2023, 54 (3): 947- 955. |
HAN Y Z , YANG W P , HONG Y , et al. Estimating the inbreeding coefficient of Huai Pigs by different methods based on chip data[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (3): 947- 955. | |
21 |
PORTAL D , ZHOU H F , ZHAO B , et al. Epstein-Barr virus nuclear antigen leader protein localizes to promoters and enhancers with cell transcription factors and EBNA2[J]. Proc Natl Acad Sci U S A, 2013, 110 (46): 18537- 18542.
doi: 10.1073/pnas.1317608110 |
22 |
DERMAWAN J K , SINGER S , TAP W D , et al. The genetic landscape of SMARCB1 alterations in SMARCB1-deficient spectrum of mesenchymal neoplasms[J]. Mod Pathol, 2022, 35 (12): 1900- 1909.
doi: 10.1038/s41379-022-01148-x |
23 |
PAWLIK K , MIKA J . Targeting members of the chemokine family as a novel approach to treating neuropathic pain[J]. Molecules, 2023, 28 (15): 5766.
doi: 10.3390/molecules28155766 |
24 | QIN L H , ZHU X J , ZHANG L Y , et al. Identification of hub genes and pathways in the development of gastric cancer by gene co-expression network analysis[J]. J Biol Regul Homeost Agents, 2021, 35 (1): 35- 44. |
25 |
MA H S , GONG X L , LI W X , et al. Missense mutation of c.635 T>C in CAPN3 impairs muscle injury repair in a limb-girdel muscular dystropy model[J]. Clin Genet, 2023, 103 (6): 663- 671.
doi: 10.1111/cge.14330 |
26 | ZHOU H J , ZHANG J , YAN Z K , et al. DECR1 directly activates HSL to promote lipolysis in cervical cancer cells[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2022, 1867 (3): 159090. |
27 |
LI H Y , DATUNASHVILI M , REYES R C , et al. Inositol hexakisphosphate kinases differentially regulate trafficking of vesicular glutamate transporters 1 and 2[J]. Front Cell Neurosci, 2022, 16, 926794.
doi: 10.3389/fncel.2022.926794 |
28 |
XIE Z C , ZHANG L C , ZHANG Q , et al. A Glu209Lys substitution in DRG1/TaACT7, which disturbs F-actin organization, reduces plant height and grain length in bread wheat[J]. New Phytol, 2023, 240 (5): 1913- 1929.
doi: 10.1111/nph.19246 |
29 |
GUI R R , LI W Q , LI Z P , et al. Effects and potential mechanisms of IGF1/IGF1R in the liver fibrosis: a review[J]. Int J Biol Macromol, 2023, 251, 126263.
doi: 10.1016/j.ijbiomac.2023.126263 |
30 | 薛周舣源, 宋显威, 吴林慧, 等. 畜禽选择信号检测方法及其统计学问题[J]. 畜牧兽医学报, 2018, 49 (6): 1099- 1107. |
XUE Z Y Y , SONG X W , WU L H , et al. The identification methods of selection signatures in livestock and its statistical problems[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49 (6): 1099- 1107. | |
31 |
TONG X K , CHEN D , HU J C , et al. Accurate haplotype construction and detection of selection signatures enabled by high quality pig genome sequences[J]. Nat Commun, 2023, 14 (1): 5126.
doi: 10.1038/s41467-023-40434-3 |
32 |
JI K X , JIAO D , YANG G , et al. Transcriptome analysis revealed potential genes involved in thermogenesis in muscle tissue in cold-exposed lambs[J]. Front Genet, 2022, 13, 1017458.
doi: 10.3389/fgene.2022.1017458 |
33 |
SHI A D , HE C Q , OTTEN K , et al. Reduced myotube diameter induced by combined inhibition of transforming growth factor-β type Ⅰ receptors Acvr1b and Tgfbr1 is associated with enhanced β1-syntrophin expression[J]. J Cell Physiol, 2024,
doi: 10.1002/jcp.31418 |
34 |
DONMEZ B O , KARAGUR E R , DONMEZ A C , et al. Calcium-dependent activation of PHEX, MEPE and DMP1 in osteocytes[J]. Mol Med Rep, 2022, 26 (6): 359.
doi: 10.3892/mmr.2022.12876 |
35 |
GOLSHAN-TAFTI M , DASTGHEIB S A , ALIJANPOUR K , et al. A thorough analysis of data on the correlation between COL9A1 polymorphisms and the susceptibility to congenital talipes equinovarus: a meta-analysis[J]. J Orthop Surg Res, 2024, 19 (1): 345.
doi: 10.1186/s13018-024-04834-5 |
36 |
SALSCHEIDER S L , GERLICH S , CABRERA-OREFICE A , et al. AIFM1 is a component of the mitochondrial disulfide relay that drives complex Ⅰ assembly through efficient import of NDUFS5[J]. EMBO J, 2022, 41 (17): e110784.
doi: 10.15252/embj.2022110784 |
37 |
GALMOZZI A , KOK B P , KIM A S , et al. PGRMC2 is an intracellular Haem chaperone critical for adipocyte function[J]. Nature, 2019, 576 (7785): 138- 142.
doi: 10.1038/s41586-019-1774-2 |
38 |
LIU N , DAI Z L , ZHANG Y C , et al. Maternal L-proline supplementation enhances fetal survival, placental development, and nutrient transport in mice[J]. Biol Reprod, 2019, 100 (4): 1073- 1081.
doi: 10.1093/biolre/ioy240 |
39 |
SHARMA D , YU Y L , SHEN L Y , et al. SLC1A5 provides glutamine and asparagine necessary for bone development in mice[J]. Elife, 2021, 10, e71595.
doi: 10.7554/eLife.71595 |
40 |
HREICH S J D , JUHEL T , LEROY S , et al. Activation of the P2RX7/IL-18 pathway in immune cells attenuates lung fibrosis[J]. Elife, 2024, 12, RP88138.
doi: 10.7554/eLife.88138.4 |
41 |
ZHANG C , CAO K K , YANG M R , et al. C5aR1 blockade reshapes immunosuppressive tumor microenvironment and synergizes with immune checkpoint blockade therapy in high-grade serous ovarian cancer[J]. Oncoimmunology, 2023, 12 (1): 2261242.
doi: 10.1080/2162402X.2023.2261242 |
42 |
ASPATWAR A , SUPURAN C T , WAHEED A , et al. Mitochondrial carbonic anhydrase VA and VB: properties and roles in health and disease[J]. J Physiol, 2023, 601 (2): 257- 274.
doi: 10.1113/JP283579 |
43 |
BASEI F L , DE CASTRO FEREZIN C , DE OLIVEIRA A L R , et al. Nek4 regulates mitochondrial respiration and morphology[J]. FEBS J, 2022, 289 (11): 3262- 3279.
doi: 10.1111/febs.16343 |
44 |
TANAKA T , WARNER B M , MICHAEL D G , et al. LAMP3 inhibits autophagy and contributes to cell death by lysosomal membrane permeabilization[J]. Autophagy, 2022, 18 (7): 1629- 1647.
doi: 10.1080/15548627.2021.1995150 |
45 | ZHONG J C , YUAN C , LIU L , et al. PCMT1 regulates the migration, invasion, and apoptosis of prostate cancer through modulating the PI3K/AKT/GSK-3β pathway[J]. Aging (Albany NY), 2023, 15 (20): 11654- 11671. |
[1] | 田晶晶, 王晓庆, 李棉燕, 王海玲, 吴启钿, 王立贤, 张龙超, 赵福平. 北京黑猪全基因组ROH检测和选择信号分析[J]. 畜牧兽医学报, 2024, 55(9): 3833-3842. |
[2] | 陈栋, 周文譞, 赵真坚, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 吴平先, 郭宗义, 王金勇, 唐国庆. 基于计算机视觉技术的猪肌内脂肪含量和眼肌面积测定系统的研发[J]. 畜牧兽医学报, 2024, 55(9): 3843-3852. |
[3] | 陈南珠, 李俊良, 余大为, 周心仪, 王晶, 邹惠影, 杜卫华. 猪MKRN3基因的印记表达和DNA甲基化状态分析[J]. 畜牧兽医学报, 2024, 55(9): 3853-3863. |
[4] | 杨柏高, 龙熙, 张亮, 徐皆欢, 戴建军, 赵学明, 潘红梅. 基于Smart-seq2探究玻璃化冷冻对猪孤雌激活囊胚基因表达的影响[J]. 畜牧兽医学报, 2024, 55(9): 3936-3946. |
[5] | 任聪, 张虎, 王钰明, 解竞静, 萨仁娜, 赵峰. 仿生消化法估测生长猪饲料有效能的准确性及可加性研究[J]. 畜牧兽医学报, 2024, 55(9): 3988-4000. |
[6] | 高力国, 申翰钦, 陈诒全, 陈胜, 蔺文成, 陈峰. 猪轮状病毒重组VP6*蛋白的原核表达及间接ELISA检测方法的建立[J]. 畜牧兽医学报, 2024, 55(9): 4021-4028. |
[7] | 朋璐, 张衡, 庞思琪, 乔竹林, 张小芬, 谭臣, 宋云峰, 周锐, 黎璐. 利用大蜡螟幼虫和小鼠感染模型筛选猪链球菌血清2、3和9型三价灭活疫苗候选菌株[J]. 畜牧兽医学报, 2024, 55(9): 4077-4090. |
[8] | 付艺乾, 梁东阁, 王铭洋, 潘佳佳, 杨彦宾, 曾磊, 康相涛. 干扰素调节因子敲减细胞系的构建及其对猪伪狂犬病病毒增殖的影响[J]. 畜牧兽医学报, 2024, 55(9): 4100-4109. |
[9] | 彭宁, 梁雅旭, 龙菲, 余东明, 钟翔. 白藜芦醇对轮状病毒感染猪肠上皮细胞IPEC-J2的抑制效应[J]. 畜牧兽医学报, 2024, 55(9): 4213-4225. |
[10] | 冯露, 田宏, 郑海学, 石正旺, 罗俊聪, 张晓阳, 尉娟娟, 周静, 廖焕程, 王婉莹. 基于酶促重组酶扩增的非洲猪瘟病毒检测方法[J]. 畜牧兽医学报, 2024, 55(9): 4226-4231. |
[11] | 夏振涛, 王楠, 王婉洁, 周期律, 黄雷, 牟玉莲. pAPN基因敲除的IPEC-J2介导的TGEV感染特征分析[J]. 畜牧兽医学报, 2024, 55(8): 3395-3407. |
[12] | 王怡, 高娟, 胡悦旻, 杨跃飞, 范博钧, 鞠辉明. 短期血清饥饿胁迫对猪骨骼肌卫星细胞代谢及自噬发生的影响[J]. 畜牧兽医学报, 2024, 55(8): 3408-3417. |
[13] | 杨程, 刘野, 程宁, 王凯月, 李欣蕾, 孙久英, 韩俊平, 李文军, 王欢欢, 邵笑, 程雪娇, 孙英峰. 一株PRRSV-2谱系1.8与1.5重组毒株的基因组特征分析[J]. 畜牧兽医学报, 2024, 55(8): 3570-3578. |
[14] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
[15] | 吕林丹, 牟豪, 胡霞, 刘明妮, 李绍梅, 李星, 宋振辉, 杨柳. 猪传染性胃肠炎病毒S基因RAA检测方法的建立与初步应用[J]. 畜牧兽医学报, 2024, 55(8): 3590-3599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||