[1] |
WANG H. Circadian biology and its recent progresses[J]. Chinese Bulletin of Life Sciences, 2015, 27(11): 1313-1319. (in Chinese)王晗. 生物钟生物学及其研究进展[J]. 生命科学, 2015, 27(11): 1313-1319.
|
[2] |
XING C, SONG L. Regulation system for generation and maintenance of circadian rhythms[J]. Military Medical Sciences, 2017, 41(8): 698-702. (in Chinese)邢陈, 宋伦. 昼夜节律产生和维持的调控系统[J]. 军事医学, 2017, 41(8): 698-702.
|
[3] |
MARCHEVA B, RAMSEY K M, BUHR E D, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J]. Nature, 2010, 466(7306): 627-631.
|
[4] |
ZHANG R, LAHENS N F, BALLANCE H I, et al. A circadian gene expression atlas in mammals: implications for biology and medicine[J]. Proc Natl Acad Sci U S A, 2014, 111(45): 16219-16224.
|
[5] |
ASTIZ M, HEYDE I, OSTER H. Mechanisms of communication in the mammalian circadian timing system[J]. Int J Mol Sci, 2019, 20(2): 343.
|
[6] |
ROSENWASSER A M, TUREK F W. Neurobiology of circadian rhythm regulation[J]. Sleep Med Clin, 2015, 10(4): 403-412.
|
[7] |
ABBOTT S M, ZEE P C. Circadian rhythms: implications for health and disease[J]. Neurol Clin, 2019, 37(3): 601-613.
|
[8] |
GIGUÈRE V, TINI M, FLOCK G, et al. Isoform-specific amino-terminal domains dictate DNA-binding properties of RORα, a novel family of orphan hormone nuclear receptors[J]. Genes Dev, 1994, 8(5): 538-553.
|
[9] |
MA H Z, KANG J, FAN W G, et al. ROR: nuclear receptor for melatonin or not?[J]. Molecules, 2021, 26(9): 2693.
|
[10] |
PILORZ V, ASTIZ M, HEINEN K O, et al. The concept of coupling in the mammalian circadian clock network[J]. J Mol Biol, 2020, 432(12): 3618-3638.
|
[11] |
URIZ-HUARTE A, DATE A, ANG H, et al. The transcriptional repressor REV-ERB as a novel target for disease[J]. Bioorg Med Chem Lett, 2020, 30(17): 127395.
|
[12] |
STRATMANN M, STADLER F, TAMANINI F, et al. Flexible phase adjustment of circadian albumin D site-binding protein (Dbp) gene expression by CRYPTOCHROME1[J]. Genes Dev, 2010, 24(12): 1317-1328.
|
[13] |
UEDA H R, HAYASHI S, CHEN W B, et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks[J]. Nat Genet, 2005, 37(2): 187-192.
|
[14] |
RIPPERGER J A, SCHIBLER U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions[J]. Nat Genet, 2006, 38(3): 369-374.
|
[15] |
POURCET B, DUEZ H. Circadian Control of inflammasome pathways: implications for circadian medicine[J]. Front Immunol, 2020, 11: 1630.
|
[16] |
JETTEN A M. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism[J]. Nucl Recept Signal, 2009, 7: e003.
|
[17] |
FAN J S, LV Z L, YANG G H, et al. Retinoic acid receptor-related orphan receptors: critical roles in tumorigenesis[J]. Front Immunol, 2018, 9: 1187.
|
[18] |
LI Z Q, ZHAO J, LIU H Y, et al. Melatonin inhibits apoptosis in mouse Leydig cells via the retinoic acid-related orphan nuclear receptor α/p53 pathway[J]. Life Sci, 2020, 246: 117431.
|
[19] |
JIA L L, JIN F, FU S Y, et al. Comparation of expression pattern of Clock genes in cashmere goat skin[J]. China Animal Husbandry & Veterinary Medicine, 2015, 42(2): 251-257. (in Chinese)贾丽丽, 金凤, 付绍印, 等. 生物钟基因在绒山羊皮肤中表达模式的比较[J]. 中国畜牧兽医, 2015, 42(2): 251-257.
|
[20] |
ZHAO Y H, LIU Z H, WANG L, et al. Expression of the RORα gene in Inner Mongolian cashmere goat hair follicles[J]. Genet Mol Res, 2015, 14(1): 380-388.
|
[21] |
LIU Z L, CHEN T, YANG D D, et al. Molecular cloning, bioinformatics analysis and transcriptional activity of promoter of nuclear factor erythroid 2-related factor(Nrf2) gene in pig[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(7): 1328-1339. (in Chinese)刘宗立, 陈涛, 杨丹丹, 等. 猪Nrf2基因克隆、生物信息学分析及启动子区转录活性分析[J]. 畜牧兽医学报, 2019, 50(7): 1328-1339.
|
[22] |
DU P F, CHEN B, GAO L G, et al. Cloning and expression analysis of chicken HMIT gene[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1811-1822. (in Chinese)杜鹏飞, 陈博, 高林歌, 等. 鸡HMIT基因的克隆与表达分析[J]. 畜牧兽医学报, 2020, 51(8): 1811-1822.
|
[23] |
WANG X J, XIANG H, ZHANG H R, et al. Cloning, sequence analysis and function prediction of HABP4 gene in goat[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3426-3438. (in Chinese)王宪军, 向华, 张焕容, 等. 山羊HABP4基因的克隆、序列分析及功能预测[J]. 畜牧兽医学报, 2021, 52(12): 3426-3438.
|
[24] |
MAURY E. Off the Clock: from circadian disruption to metabolic disease[J]. Int J Mol Sci, 2019, 20(7): 1597.
|
[25] |
YU E A, WEAVER D R. Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes[J]. Aging (Albany NY), 2011, 3(5): 479-493.
|
[26] |
FAN J F, HE Y, WANG W Z, et al. Research progress of small molecular compounds regulating biological clock[J]. China Pharmacy, 2021, 32(7): 890-896. (in Chinese)凡杰夫, 何颖, 王伟忠, 等. 调控生物钟的小分子化合物的研究进展[J]. 中国药房, 2021, 32(7): 890-896.
|
[27] |
XIAO Y Y, ZHAO L J, LI W D, et al. Circadian clock gene BMAL1 controls testosterone production by regulating steroidogenesis-related gene transcription in goat Leydig cells[J]. J Cell Physiol, 2021, 236(9): 6706-6725.
|
[28] |
ZHAO H C, GAO D K, JIANG H Z, et al. Construction of eukaryotic expression vector and bioinformatics analysis of circadian CLOCK gene in goats[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(12): 4327-4338. (in Chinese)赵泓淙, 高登科, 江海圳, 等. 山羊生物钟基因CLOCK真核表达载体的构建和生物信息学分析[J]. 中国畜牧兽医, 2021, 48(12): 4327-4338.
|
[29] |
WANG Y Q, GAO D K, ZHAO H C, et al. Construction of a eukaryotic expression vector in goat NR1D1 gene and its bioinformatics analysis[J]. Chinese Journal of Animal Science, doi:10.19556/j.0258-7033.20210825-06.(in Chinese)王逸群, 高登科, 赵泓淙, 等. 山羊NR1D1基因真核表达载体的构建及生物信息学分析[J]. 中国畜牧杂志, doi:10.19556/j.0258-7033.20210825-06.
|
[30] |
ZHAO Y H, SUN Y M, LIU Z H, et al. Cloning and sequence analysis of RORα gene in inner Mongolian cashmere goat[J]. Journal of Inner Mongolia Agricultural University, 2010, 31(3): 1-4. (in Chinese)赵艳红, 孙永明, 刘志红, 等. 内蒙古绒山羊孤核受体RORα部分cDNA克隆及序列分析[J]. 内蒙古农业大学学报, 2010, 31(3): 1-4.
|
[31] |
CHEN C T, SCHULTZ J A, HAVEN S E, et al. Loss of RAR-related orphan receptor alpha (RORα) selectively lowers docosahexaenoic acid in developing cerebellum[J]. Prostaglandins Leukot Essent Fatty Acids, 2020, 152: 102036.
|
[32] |
YASUI H, MATSUZAKI Y, KONNO A, et al. Global knockdown of retinoid-related orphan Receptor α in mature Purkinje cells reveals aberrant cerebellar phenotypes of Spinocerebellar ataxia[J]. Neuroscience, 2021, 462: 328-336.
|
[33] |
DZHAGALOV I, GIGUÈRE V, HE Y W. Lymphocyte development and function in the absence of retinoic acid-related orphan receptor α[J]. J Immunol, 2004, 173(5): 2952-2959.
|
[34] |
COOK D N, KANG H S, JETTEN A M. Retinoic acid-related orphan receptors (RORs): regulatory functions in Immunity, development, circadian rhythm, and metabolism[J]. Nucl Receptor Res, 2015, 2: 101185.
|
[35] |
FUJIEDA H, BREMNER R, MEARS A J, et al. Retinoic acid receptor-related orphan receptor α regulates a subset of cone genes during mouse retinal development[J]. J Neurochem, 2009, 108(1): 91-101.
|
[36] |
CAI Z M, ISHIBASHI T, KOZAI M, et al. ROR agonist hampers the proliferation and survival of postactivated CD8+ T cells through the downregulation of cholesterol synthesis-related genes[J]. Immunol Cell Biol, 2021, 99(3): 288-298.
|
[37] |
SAYED R K A, MOKHTAR D M, FERNÁNDEZ-ORTIZ M, et al. Retinoid-related orphan nuclear receptor alpha (RORα)-deficient mice display morphological testicular defects[J]. Lab Invest, 2019, 99(12): 1835-1849.
|
[38] |
SAYED R K A, MOKHTAR D M, FERNÁNDEZ-ORTIZ M, et al. Lack of retinoid acid receptor-related orphan receptor alpha accelerates and melatonin supplementation prevents testicular aging[J]. Aging (Albany NY), 2020, 12(13): 12648-12668.
|
[39] |
YANG M H, GUAN S Y, TAO J L, et al. Melatonin promotes male reproductive performance and increases testosterone synthesis in mammalian Leydig cells[J]. Biol Reprod, 2021, 104(6): 1322-1336.
|
[40] |
FANG Y, ZHANG J L, LI Y H, et al. Melatonin-induced demethylation of antioxidant genes increases antioxidant capacity through RORα in cumulus cells of prepubertal lambs[J]. Free Radic Biol Med, 2019, 131: 173-183.
|
[41] |
DENG S L, ZHANG Y, YU K, et al. Melatonin up-regulates the expression of the GATA-4 transcription factor and increases testosterone secretion from Leydig cells through RORα signaling in an in vitro goat spermatogonial stem cell differentiation culture system[J]. Oncotarget, 2017, 8(66): 110592-110605.
|
[42] |
XU Q, HUANG M, WANG X M, et al. TF promotes circadian phase advancement by affecting expressions of liver circadian clock genes[J]. Military Medical Sciences, 2021, 45(1): 1-6. (in Chinese)徐晴, 黄鸣, 王晓明, 等. TF通过影响肝脏生物钟基因表达促进昼夜节律相位前移[J]. 军事医学, 2021, 45(1): 1-6.
|
[43] |
PANDA S. Circadian physiology of metabolism[J]. Science, 2016, 354(6315): 1008-1015.
|
[44] |
YANG X Y, DOWNES M, YU R T, et al. Nuclear receptor expression links the circadian clock to metabolism[J]. Cell, 2006, 126(4): 801-810.
|