

畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (11): 5173-5182.doi: 10.11843/j.issn.0366-6964.2024.11.032
蔡梦雷1,2(
), 赵东旭1, 张政钢1, 刘东海1, 姜婷婷1, 苏士炫1, 闫雪敏1, 薛晓阳2, 崔国林1,2,*(
)
收稿日期:2024-01-08
出版日期:2024-11-23
发布日期:2024-11-30
通讯作者:
崔国林
E-mail:caimenglei2022@163.com;czzcgl_19@163.com
作者简介:蔡梦雷(1997-), 男, 河南商丘人, 硕士, 主要从事病原细菌致病机制研究, E-mail: caimenglei2022@163.com
基金资助:
Menglei CAI1,2(
), Dongxu ZHAO1, Zhenggang ZHANG1, Donghai LIU1, Tingting JIANG1, Shixuan SU1, Xuemin YAN1, Xiaoyang XUE2, Guolin CUI1,2,*(
)
Received:2024-01-08
Online:2024-11-23
Published:2024-11-30
Contact:
Guolin CUI
E-mail:caimenglei2022@163.com;czzcgl_19@163.com
摘要:
旨在研究转录延长因子GreA蛋白对肠炎沙门菌生物学特性和致病力的影响。以ATCC13076为亲本株,通过λ-Red重组系统构建ΔgreA和ΔgreB单基因缺失株、ΔgreAΔgreB双基因缺失株,检测亲本株及缺失株的体外生长和运动力,对压力环境抵抗力,生物被膜形成能力,以及对细胞和小鼠的致病力,并利用RNA-seq检测差异表达基因。结果显示:GreA蛋白负调控肠炎沙门菌H2O2抵抗力、生长速度以及生物被膜形成能力,正调控肠炎沙门菌运动能力、细胞入侵和胞内增殖能力及其在小鼠脏器的定殖能力,但对高温和酸性环境抵抗力无显著影响。GreA蛋白影响107个基因表达,其中正向调控fim操纵子、flg操纵子、inv操纵子等,主要与细菌运动及入侵细胞相关;负向调控于cps操纵子、cys操纵子、leu操纵子等,主要与氨基酸合成及代谢相关。GreA蛋白通过调控鞭毛合成和细胞入侵相关代谢通路的表达,影响肠炎沙门菌环境适应性生存及致病力。
中图分类号:
蔡梦雷, 赵东旭, 张政钢, 刘东海, 姜婷婷, 苏士炫, 闫雪敏, 薛晓阳, 崔国林. GreA蛋白对肠炎沙门菌生物学特性及致病力影响[J]. 畜牧兽医学报, 2024, 55(11): 5173-5182.
Menglei CAI, Dongxu ZHAO, Zhenggang ZHANG, Donghai LIU, Tingting JIANG, Shixuan SU, Xuemin YAN, Xiaoyang XUE, Guolin CUI. The Effect of GreA Protein on the Biological Characteristics and Pathogenicity of Salmonella Enteritidis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5173-5182.
表 1
引物信息"
| 引物 Primers | 序列(5′→3′) Sequence |
| greAF | AGCCGGGGTAGAGTTCATTGCCCCCTACAGGAATGTTCAAGAGGTATAACGTGTAGGCTGGAGCTGCTTC |
| greAR | ACAATACACCAACAATTTGCGTATTGAGTACTACTTAAAGGTATTCCACCATATGAATATCCTCCTTAG |
| greBF | ACGTTATACCCCGTGTGCGCAATATCGACAGCAAAGGTAAATCAACGAGGTGTAGGCTGGAGCTGCTTC |
| greBR | ATGCCAGCCATCAGCGGGGGCTTAGGATTCTTCTTGTCTTATTTGACGCATATGAATATCCTCCTTAG |
| greApF | GCGGATCCGATGCAAGCTATTCCGATGACCT |
| greApF | CGAAGCTTAAGGTATTCCACTTTAAGCACT |
| greBpF | GCGGATCCGATGAAAACGCCCCTGATCAC |
| greBpR | CGAAGCTTTTTGACGTATTCGATCGCA |
表 2
差异表达基因所属操纵子及功能描述"
| 差异类型 Difference type | 操纵子 Operons | 功能描述 Function description |
| 上调 Upregulated | invA-invE-invG-invF | SPI-1 |
| ttrC-ttrA | SPI-2 | |
| ssaL-ssaK | SPI-2 | |
| ssaN-ssaV-ssaM | SPI-2 | |
| flgJ-SEN_RS09710-flgH | Flagellar L-ring | |
| flgD-flgC-flgB | Flagellar bas al-body rod modification | |
| flhA-flhE | Flagellar biosynthesis | |
| fliR- fliQ | Flagellar biosynthesis | |
| fimA-fimI-fimC | Type 1 fimbrial | |
| cheR-cheB-cheY | Bacterial chemotaxis protein | |
| motA-motB-cheA-cheW | Bacterial chemotaxis protein | |
| dppD-dppC | Dipeptide transport system binding protein | |
| argC-argB | Arginine biosynthesis | |
| potE- speF | Arginine and proline metabolism | |
| 下调 Downregulated | leuD-leuC-leuB | Leucine synthesis |
| cpsG-cpsB-wcaI- SEN_RS10955-SEN_RS10960-gmD-wcaF | Fructose and mannose metabolism | |
| yedF-yedE | Anaerobic metabolism | |
| cysC-cysN-cysD | Purine metabolism | |
| SEN_RS05075-wrbA | Ubiquinone and other terpenoid-quinone biosynthesis | |
| sigE-sopB | SPI-1 | |
| cbpM-cbpA | Curved DNA-binding protein |
| 1 |
BASIRI N , ZAREI M , KARGAR M , et al. Effect of plasma-activated water on the biofilm-forming ability of Salmonella enterica serovar enteritidis and expression of the related genes[J]. Int J Food Microbiol, 2023, 406, 110419.
doi: 10.1016/j.ijfoodmicro.2023.110419 |
| 2 | FERRARI R G , ROSARIO D K A , CUNHA-NETO A , et al. Worldwide epidemiology of Salmonella serovars in animal-based foods: a meta-analysis[J]. Appl Environ Microbiol, 2019, 85 (14): e00591- 19. |
| 3 | 李宇, 冯忠义, 任艳茹, 等. 肠炎沙门菌感染对蛋鸡肝脏ATP5G3、ND2基因表达的影响[J]. 山东畜牧兽医, 2023, 44 (4): 1- 4. |
| LI Y , FENG Z Y , REN Y R , et al. Effects of Salmonella enteritidis infection on ATP5G3 and ND2 gene expression in liver of laying hens[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2023, 44 (4): 1- 4. | |
| 4 |
ZAHOOR I , GHAYAS A , BASHEER A . Genetics and genomics of susceptibility and immune response to necrotic enteritis in chicken: a review[J]. Mol Biol Rep, 2018, 45 (1): 31- 37.
doi: 10.1007/s11033-017-4138-8 |
| 5 |
GAVIRIA-CANTIN T , EL MOUALI Y , LE GUYON S , et al. Gre factors-mediated control of hilD transcription is essential for the invasion of epithelial cells by Salmonella enterica serovar typhimurium[J]. PLoS Pathog, 2017, 13 (4): e1006312.
doi: 10.1371/journal.ppat.1006312 |
| 6 |
DYLEWSKI M , FERNÁNDEZ-COLL L , BRUHN-OLSZEWSKA B , et al. Autoregulation of greA expression relies on GraL rather than on greA promoter region[J]. Int J Mol Sci, 2019, 20 (20): 5224.
doi: 10.3390/ijms20205224 |
| 7 |
ORLOVA M , NEWLANDS J , DAS A , et al. Intrinsic transcript cleavage activity of RNA polymerase[J]. Proc Natl Acad Sci U S A, 1995, 92 (10): 4596- 4600.
doi: 10.1073/pnas.92.10.4596 |
| 8 |
NOGALES J , CAMPOS R , BENABDELKHALEK H , et al. Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris[J]. Mol Plant Microbe Interact, 2002, 15 (3): 225- 232.
doi: 10.1094/MPMI.2002.15.3.225 |
| 9 |
FENG S , LIU Y , LIANG W , et al. Involvement of transcription elongation factor GreA in Mycobacterium viability, antibiotic susceptibility, and intracellular fitness[J]. Front Microbiol, 2020, 11, 413.
doi: 10.3389/fmicb.2020.00413 |
| 10 |
LI K , JIANG T Y , YU B , et al. Transcription elongation factor GreA has functional chaperone activity[J]. PLoS One, 2012, 7 (12): e47521.
doi: 10.1371/journal.pone.0047521 |
| 11 |
LAPTENKO O , LEE J , LOMAKIN I , et al. Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase[J]. EMBO J, 2003, 22 (23): 6322- 6334.
doi: 10.1093/emboj/cdg610 |
| 12 |
VINELLA D , POTRYKUS K , MURPHY H , et al. Effects on growth by changes of the balance between GreA, GreB, and DksA suggest mutual competition and functional redundancy in Escherichia coli[J]. J Bacteriol, 2012, 194 (2): 261- 273.
doi: 10.1128/JB.06238-11 |
| 13 | 胡凌芸, 丁睿清, 王菲, 等. 肠炎沙门菌C50041ΔpagN缺失株的构建及其生物学特性分析[J]. 中国兽医科学, 2023, 53 (8): 1019- 1025. |
| HU L Y , DING R Q , WANG F , et al. Construction of pagN gene deletion strain of Salmonella enteritidis and its biochemical characteristics analysis[J]. Chinese Veterinary Science, 2023, 53 (8): 1019- 1025. | |
| 14 |
LI J , OVERALL C C , JOHNSON R C , et al. ChIP-Seq analysis of the σE regulon of Salmonella enterica serovar typhimurium reveals new genes implicated in heat shock and oxidative stress response[J]. PLoS One, 2015, 10 (9): e0138466.
doi: 10.1371/journal.pone.0138466 |
| 15 |
STEPANOVIĆ S , VUKOVIĆ D , DAKIĆ I , et al. A modified microtiter-plate test for quantification of staphylococcal biofilm formation[J]. J Microbiol Methods, 2000, 40 (2): 175- 179.
doi: 10.1016/S0167-7012(00)00122-6 |
| 16 |
ESPINOZA R A , SILVA-VALENZUELA C A , AMAYA F A , et al. Differential roles for pathogenicity islands SPI-13 and SPI-8 in the interaction of Salmonella enteritidis and Salmonella Typhi with murine and human macrophages[J]. Biol Res, 2017, 50 (1): 5.
doi: 10.1186/s40659-017-0109-8 |
| 17 |
崔国林, 李冰心, 张寒琪, 等. FTN_0109蛋白对土拉弗朗西斯菌致病力的影响[J]. 畜牧兽医学报, 2020, 51 (2): 337- 345.
doi: 10.11843/j.issn.0366-6964.2020.02.015 |
|
CUI G L , LI B X , ZHANG H Q , et al. The effect of the protein FTN_0109 on the virulence of Francisella tularensis[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (2): 337- 345.
doi: 10.11843/j.issn.0366-6964.2020.02.015 |
|
| 18 |
DE OLIVEIRA BARBOSA F , DE FREITAS NETO O C , BATISTA D F A , et al. Contribution of flagella and motility to gut colonisation and pathogenicity of Salmonella enteritidis in the chicken[J]. Braz J Microbiol, 2017, 48 (4): 754- 759.
doi: 10.1016/j.bjm.2017.01.012 |
| 19 |
王俊, 李军, 崔国林. FliC蛋白R91S突变对肠炎沙门菌鞭毛形态和小鼠体内定植的影响[J]. 畜牧兽医学报, 2022, 53 (2): 607- 617.
doi: 10.11843/j.issn.0366-6964.2022.02.027 |
|
WANG J , LI J , CUI G L . The effect of R91S mutation in FliC on the flagellar shape and Salmonella enteritidis colonization in BALB/c mice[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (2): 607- 617.
doi: 10.11843/j.issn.0366-6964.2022.02.027 |
|
| 20 |
李莉莉, 陈凯风, 陈兵, 等. STM1827在鼠伤寒沙门菌生物被膜形成及环境应激中的调控作用[J]. 畜牧兽医学报, 2023, 54 (12): 5207- 5217.
doi: 10.11843/j.issn.0366-6964.2023.12.030 |
|
LI L L , CHEN K F , CHEN B , et al. Regulatory role of STM1827 in the biofilm formation and environmental stress of Salmonella typhimurium[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (12): 5207- 5217.
doi: 10.11843/j.issn.0366-6964.2023.12.030 |
|
| 21 | 刘琳, 谭小娟, 贾爱群. 细菌群体感应与细菌生物被膜形成之间的关系[J]. 微生物学报, 2012, 52 (3): 271- 278. |
| LIU L , TAN X J , JIA A Q . Relationship between bacterial quorum sensing and biofilm formation—a review[J]. Acta Microbiologica Sinica, 2012, 52 (3): 271- 278. | |
| 22 |
DIDOUH N , KHADIDJA M , CAMPOS C , et al. Assessment of biofilm, enzyme production and antibiotic susceptibility of bacteria from milk pre- and post-pasteurization pipelines in Algeria[J]. Int J Food Microbiol, 2023, 407, 110389.
doi: 10.1016/j.ijfoodmicro.2023.110389 |
| 23 |
DULA S , AJAYEOBA T A , IJABADENIYI O A . Bacterial biofilm formation on stainless steel in the food processing environment and its health implications[J]. Folia Microbiol (Praha), 2021, 66 (3): 293- 302.
doi: 10.1007/s12223-021-00864-2 |
| 24 | 唐正露, 曹堃, 张丽, 等. 肠炎沙门氏菌ssrAB、hilA、hilD基因缺失菌株的构建及其生物学特性[J]. 微生物学通报, 2021, 48 (4): 1195- 1205. |
| TANG Z L , CAO K , ZHANG L , et al. Construction and characterization of ssrAB, hilA, hilD-deficient mutants of Salmonella enteritidis[J]. Microbiology China, 2021, 48 (4): 1195- 1205. | |
| 25 | 董晓璐, 秦晓杰, 刘阳泰, 等. 食源性沙门氏菌在人体胃肠道中耐受及致病机制研究进展[J]. 食品与发酵工业, 2021, 47 (24): 286- 292. |
| DONG X L , QIN X J , LIU Y T , et al. Research progress on tolerance and pathogenic mechanism of foodborne Salmonella spp. in human gastrointestinal tract[J]. Food and Fermentation Industries, 2021, 47 (24): 286- 292. | |
| 26 |
BANDA M M , PEREZ-MORALES D , ZAVALA-ALVARADO C , et al. Two additional connections between the transcriptional programs controlling invasion and intracellular replication of Salmonella: HilD-SprB positively regulates phoP and slyA[J]. J Bacteriol, 2022, 204 (11): e0020422.
doi: 10.1128/jb.00204-22 |
| 27 | 续晨冉. 小檗碱对沙门氏菌Ⅰ型菌毛及其细菌生物膜的抑制作用[D]. 长沙: 湖南师范大学, 2021. |
| XU C R. Inhibitory effect of berberine on Salmonella type Ⅰ fimbriae and its biofilm[D]. Changsha: Hunan Normal University, 2021. (in Chinese) | |
| 28 |
KATANI R , KUDVA I T , SRINIVASAN S , et al. Strain and host-cell dependent role of type-1 fimbriae in the adherence phenotype of super-shed Escherichia coli O157:H7[J]. Int J Med Microbiol, 2021, 311 (4): 151511.
doi: 10.1016/j.ijmm.2021.151511 |
| [1] | 刘炜, 马嘉怡, 耿浩宇, 谢添, 苗苏南, 廖宗杰, 耿士忠. 一株广谱沙门菌噬菌体的分离鉴定及其生物学特性[J]. 畜牧兽医学报, 2024, 55(9): 4061-4068. |
| [2] | 郑焕琴, 姜晓敏, 岳红, 王宝岩, 刘洋, 张兴晓, 张建龙, 朱洪伟. 猫1型疱疹病毒分离鉴定及部分生物学特性分析[J]. 畜牧兽医学报, 2024, 55(7): 3040-3048. |
| [3] | 张琰, 吴梅金, 周家豪, 刁洪秀. 阿霉素处理后对犬乳腺肿瘤细胞系CHMp lncRNAs差异表达的影响[J]. 畜牧兽医学报, 2024, 55(6): 2716-2726. |
| [4] | 徐朕宇, 邓肖玉, 王月丽, 孙灿, 吴澳迪, 曹剑, 易继海, 王勇, 王震, 陈创夫. 牛种布鲁氏菌A19ΔBtpA缺失株生物学特性及其免疫原性研究[J]. 畜牧兽医学报, 2024, 55(5): 2135-2145. |
| [5] | 高洁, 李晓成, 穆杨, 张慧, 魏荣, 李劼. 荚膜B型多杀性巴氏杆菌外膜囊泡生物学特性分析与免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2168-2175. |
| [6] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
| [7] | 李芃绪, 李世景, 孙骏, 项维, 赵苗苗, 侯天牧, 李华明, 广敏, 陈瑞格, 徐梦然, 吴晓敏, 姜合祥, 雷连成, 张付贤. 致脑膜炎猪链球菌2型的分子分型鉴定及其生物学特性[J]. 畜牧兽医学报, 2024, 55(3): 1192-1207. |
| [8] | 郑琳, 魏炳栋, 滑峰, 陈龙, 丁媛. 裂解性噬菌体对肉仔鸡感染肠炎沙门菌的治疗效果[J]. 畜牧兽医学报, 2024, 55(3): 1314-1327. |
| [9] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
| [10] | 王晋宇, 张凯川, 王芮杰, 高铎, 蒋祺丰, 贾坤. 一株铜绿假单胞菌噬菌体全基因组分析及与抗生素体外联合应用效果[J]. 畜牧兽医学报, 2024, 55(2): 727-738. |
| [11] | 张唯玉, 程景, 许家宝, 王静, 陶薪燕, 李博, 张亚伟, 张丹丹, 张宁, 郝振凯, 周琛帛, 张元庆. 晋南牛SREBP1基因调控前体脂肪细胞分化的研究[J]. 畜牧兽医学报, 2024, 55(11): 5003-5017. |
| [12] | 卢建, 居小军, 王星果, 马猛, 王强, 李永峰, 窦套存, 胡玉萍, 郭军, 邵丹, 童海兵, 曲亮. 育成期代谢能摄入量对蛋鸡生殖器官发育、激素水平和卵巢基因表达的影响[J]. 畜牧兽医学报, 2024, 55(11): 5085-5100. |
| [13] | 彭娜娜, 宁慧敏, 陈玉豪, 李欣颖, 祝福强, 于国滨, 董伟. 肠炎沙门菌菌毛重组蛋白对其细胞黏附的竞争性阻断效应[J]. 畜牧兽医学报, 2024, 55(11): 5183-5190. |
| [14] | 毛晓宇, 杜嘉伟, 汤嘉玉, 潘金海, 蒋蕾, 孙小磊, 昝林森, 王洪宝. 干扰和过表达CHRNG对牛成肌细胞增殖分化的影响[J]. 畜牧兽医学报, 2024, 55(10): 4360-4376. |
| [15] | 苗舒, 安济山, 王祚, 肖定福, 兰欣怡, 刘磊, 沈维军, 万发春. 亮氨酸通过PI3K-AKT信号通路促进牛成肌细胞的增殖[J]. 畜牧兽医学报, 2024, 55(1): 142-152. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||