1 |
PETERSON L W , ARTIS D . Intestinal epithelial cells: regulators of barrier function and immune homeostasis[J]. Nat Rev Immunol, 2014, 14 (3): 141- 153.
doi: 10.1038/nri3608
|
2 |
SLIFER Z M , BLIKSLAGER A T . The integral role of tight junction proteins in the repair of injured intestinal epithelium[J]. Int J Mol Sci, 2020, 21 (3): 972.
doi: 10.3390/ijms21030972
|
3 |
GASALY N , DE VOS P , HERMOSO M A . Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation[J]. Front Immunol, 2021, 12, 658354.
doi: 10.3389/fimmu.2021.658354
|
4 |
KAŹMIERCZAK-SIEDLECKA K , MARANO L , MEROLA E , et al. Sodium butyrate in both prevention and supportive treatment of colorectal cancer[J]. Front Cell Infect Microbiol, 2022, 12, 1023806.
doi: 10.3389/fcimb.2022.1023806
|
5 |
HUANG C , SONG P X , FAN P X , et al. Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets[J]. J Nutr, 2015, 145 (12): 2774- 2780.
doi: 10.3945/jn.115.217406
|
6 |
ZHAO H B , JIA L , YAN Q Q , et al. Effect of Clostridium butyricum and butyrate on intestinal barrier functions: study of a rat model of severe acute pancreatitis with intra-abdominal hypertension[J]. Front Physiol, 2020, 11, 561061.
doi: 10.3389/fphys.2020.561061
|
7 |
WANG H B , WANG P Y , WANG X , et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J]. Dig Dis Sci, 2012, 57 (12): 3126- 3135.
doi: 10.1007/s10620-012-2259-4
|
8 |
HUANG X Y , OSHIMA T , TOMITA T , et al. Butyrate alleviates cytokine-induced barrier dysfunction by modifying Claudin-2 levels[J]. Biology (Basel), 2021, 10 (3): 205.
|
9 |
MA N , MA X . Dietary amino acids and the gut-microbiome-immune axis: physiological metabolism and therapeutic prospects[J]. Compr Rev Food Sci Food Saf, 2019, 18 (1): 221- 242.
doi: 10.1111/1541-4337.12401
|
10 |
JIANG H , CHEN C Y , GAO J . Extensive summary of the important roles of indole propionic acid, a gut microbial metabolite in host health and disease[J]. Nutrients, 2022, 15 (1): 151.
doi: 10.3390/nu15010151
|
11 |
JENNIS M , CAVANAUGH C R , LEO G C , et al. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo[J]. Neurogastroenterol Motil, 2018, 30 (2): e13178.
doi: 10.1111/nmo.13178
|
12 |
LI J J , ZHANG L , WU T , et al. Indole-3-propionic acid improved the intestinal barrier by enhancing epithelial barrier and mucus barrier[J]. J Agric Food Chem, 2021, 69 (5): 1487- 1495.
doi: 10.1021/acs.jafc.0c05205
|
13 |
QIU Y Q , MA X Y , YANG X F , et al. Effect of sodium butyrate on cell proliferation and cell cycle in porcine intestinal epithelial (IPEC-J2) cells[J]. In Vitro Cell Dev Biol Anim, 2017, 53 (4): 304- 311.
doi: 10.1007/s11626-016-0119-9
|
14 |
LAN H , ZHANG L Y , HE W , et al. Sinapic acid alleviated inflammation-induced intestinal epithelial barrier dysfunction in lipopolysaccharide-(LPS-) treated Caco-2 cells[J]. Mediators Inflamm, 2021, 2021, 5514075.
|
15 |
MA Y H , WANG Q M , YU K , et al. 6-Formylindolo(3, 2-b)carbazole induced aryl hydrocarbon receptor activation prevents intestinal barrier dysfunction through regulation of Claudin-2 expression[J]. Chem Biol Interact, 2018, 288, 83- 90.
doi: 10.1016/j.cbi.2018.04.020
|
16 |
HE S S , GUO Y H , ZHAO J X , et al. Ferulic acid ameliorates lipopolysaccharide-induced barrier dysfunction via MicroRNA-200c-3p-mediated activation of PI3K/AKT pathway in caco-2 cells[J]. Front Pharmacol, 2020, 11, 376.
doi: 10.3389/fphar.2020.00376
|
17 |
KUO W T , ODENWALD M A , TURNER J R , et al. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival[J]. Ann N Y Acad Sci, 2022, 1514 (1): 21- 33.
doi: 10.1111/nyas.14798
|
18 |
RUSSO E , GIUDICI F , FIORINDI C , et al. Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease[J]. Front Immunol, 2019, 10, 2754.
doi: 10.3389/fimmu.2019.02754
|
19 |
FU Y F , LYU J , WANG S S . The role of intestinal microbes on intestinal barrier function and host immunity from a metabolite perspective[J]. Front Immunol, 2023, 14, 1277102.
doi: 10.3389/fimmu.2023.1277102
|
20 |
PARADA VENEGAS D , DE LA FUENTE M K , LANDSKRON G , et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10, 277.
doi: 10.3389/fimmu.2019.00277
|
21 |
张秋玉, 卞中博, 孙小蝶, 等. 丁酸钠通过自噬途径降解HIF-1α抑制结直肠癌细胞生长[J]. 现代肿瘤医学, 2022, 30 (5): 762- 767.
|
|
ZHANG Q Y , BIAN Z B , SUN X D , et al. Sodium butyrate inhibits the growth of colorectal cancer cells by promoting autophagic degradation of HIF-1α[J]. Journal of Modern Oncology, 2022, 30 (5): 762- 767.
|
22 |
MARTIN-GALLAUSIAUX C , MARINELLI L , BLOTTIōRE H M , et al. SCFA: mechanisms and functional importance in the gut[J]. Proc Nutr Soc, 2021, 80 (1): 37- 49.
doi: 10.1017/S0029665120006916
|
23 |
张笑添, 车昌燕, 姚步月, 等. miR-92a/Dickkopf相关蛋白1介导丁酸钠调控Wnt/β-catenin信号通路抑制结肠癌细胞增殖[J]. 中国生物化学与分子生物学报, 2023, 39 (12): 1743- 1752.
|
|
ZHANG X T , CHE C Y , YAO B Y , et al. Sodium butyrate inhibits colon cancer proliferation through miR-92a/DKK1-mediated inhibition of the Wnt/β-catenin pathway[J]. Chinese Journal of Biochemistry and Molecular Biology, 2023, 39 (12): 1743- 1752.
|
24 |
PARADIS T , BōGUE H , BASMACIYAN L , et al. Tight junctions as a key for pathogens invasion in intestinal epithelial cells[J]. Int J Mol Sci, 2021, 22 (5): 2506.
doi: 10.3390/ijms22052506
|
25 |
CHELAKKOT C , GHIM J , RYU S H . Mechanisms regulating intestinal barrier integrity and its pathological implications[J]. Exp Mol Med, 2018, 50 (8): 1- 9.
|
26 |
GANAPATHY A S , SAHA K , SUCHANEC E , et al. AP2M1 mediates autophagy-induced CLDN2 (Claudin 2) degradation through endocytosis and interaction with LC3 and reduces intestinal epithelial tight junction permeability[J]. Autophagy, 2022, 18 (9): 2086- 2103.
doi: 10.1080/15548627.2021.2016233
|
27 |
冯燕海. 紧密连接蛋白Claudin-2研究进展[J]. 重庆医学, 2018, 47 (5): 697- 699.
|
|
FENG Y H . Research progress of tight junction protein Claudin-2[J]. Chongqing Medicine Journal, 2018, 47 (5): 697- 699.
|
28 |
MIAO W , WU X J , WANG K , et al. Sodium butyrate promotes reassembly of tight junctions in Caco-2 monolayers involving inhibition of MLCK/MLC2 pathway and phosphorylation of PKCβ2[J]. Int J Mol Sci, 2016, 17 (10): 1696.
doi: 10.3390/ijms17101696
|
29 |
SEGAIN J P , RAINGEARD DE LA BLETIERE D , BOURREILLE A , et al. Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn's disease[J]. Gut, 2000, 47 (3): 397- 403.
doi: 10.1136/gut.47.3.397
|
30 |
GAO J , XU K , LIU H N , et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism[J]. Front Cell Infect Microbiol, 2018, 8, 13.
doi: 10.3389/fcimb.2018.00013
|
31 |
VENKATESH M , MUKHERJEE S , WANG H W , et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4[J]. Immunity, 2014, 41 (2): 296- 310.
doi: 10.1016/j.immuni.2014.06.014
|
32 |
CAPALDO C T , NUSRAT A . Cytokine regulation of tight junctions[J]. Biochim Biophys Acta, 2009, 1788 (4): 864- 871.
doi: 10.1016/j.bbamem.2008.08.027
|
33 |
KORSTEN S G P J , VROMANS H , GARSSEN J , et al. Butyrate protects barrier integrity and suppresses immune activation in a Caco-2/PBMC Co-culture model while HDAC inhibition mimics butyrate in restoring cytokine-induced barrier disruption[J]. Nutrients, 2023, 15 (12): 2760.
doi: 10.3390/nu15122760
|