畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4455-4465.doi: 10.11843/j.issn.0366-6964.2024.10.018
张寅梁(), 张冉, 王文君, 王德贺, 李兰会, 周荣艳*(
)
收稿日期:
2024-03-25
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
周荣艳
E-mail:874197127@.qq.com;rongyanzhou@126.com
作者简介:
张寅梁(1998-), 男, 山西原平人, 硕士生, 主要从事畜禽遗传资源种质特性挖掘、保存与利用研究, E-mail:874197127@.qq.com
基金资助:
Yinliang ZHANG(), Ran ZHANG, Wenjun WANG, Dehe WANG, Lanhui LI, Rongyan ZHOU*(
)
Received:
2024-03-25
Online:
2024-10-23
Published:
2024-11-04
Contact:
Rongyan ZHOU
E-mail:874197127@.qq.com;rongyanzhou@126.com
摘要:
旨在挖掘影响蛋鸡产蛋前后骨代谢差异的调控通路和关键候选基因,为进一步研究维持蛋鸡骨骼健康的调控机制提供理论依据。本研究选择15只15周龄和12只22周龄体重相近饲养条件相同的海兰灰蛋鸡,采集血液和胫骨,测定血浆钙、磷、雌激素、骨代谢相关生化指标,根据雌激素水平选择每组各6只的胫骨组织构建12个转录组文库并筛选差异表达基因,并对差异表达基因进行GO功能和KEGG富集分析。随机选择6个差异表达基因,利用qRT-PCR验证其相对表达量。15周龄与22周龄相比,蛋鸡血浆骨代谢标记物和雌激素水平均呈现显著变化(P<0.05)。构建的12个胫骨cDNA文库中得到40 082 240~186 154 554条有效碱基序列数,Q30值最少为92.18%,比对率在76.52%~90.55%之间。对15周龄与22周龄胫骨转录组进行比较,鉴定出1 832个差异表达基因,其中914个基因下调,918个基因上调。GO功能注释发现,差异表达基因主要显著富集在蛋白加工、对内质网应激的反应和胶原原纤维组织等过程。KEGG富集分析发现,与骨代谢相关的显著富集通路有类固醇生物合成、甲状腺激素合成、TGF-β信号通路、MAPK信号通路、PI3K-Akt信号通路,筛选出18个这些通路共有的基因作为调控骨代谢的关键候选基因。本研究揭示了产蛋前后蛋鸡胫骨组织中基因表达存在差异,筛选到多个影响骨代谢的差异表达基因和通路,为进一步研究蛋鸡产蛋前后骨代谢转换机制提供理论依据。
中图分类号:
张寅梁, 张冉, 王文君, 王德贺, 李兰会, 周荣艳. 基于转录组数据挖掘蛋鸡产蛋前后骨代谢差异的关键候选基因[J]. 畜牧兽医学报, 2024, 55(10): 4455-4465.
Yinliang ZHANG, Ran ZHANG, Wenjun WANG, Dehe WANG, Lanhui LI, Rongyan ZHOU. Mining of Key Candidate Genes Involved in Bone Metabolism Differences at Pre- and Post-laying Stage Based on Transcriptome Data in Laying Hens[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4455-4465.
表 1
引物信息"
基因 Gene | 登录号 Accession number | 引物序列(5′→3′) Primer sequence | 扩增长度/bp Amplification length |
TF | NP_990635.2 | F: CAACCTCAGGGACCTCACAC | 167 |
R: TGGGCTTCAGCTTGTATGGG | |||
CNRIP1 | NP_001264459.1 | F: CAGGTCAACATGCAGTTTAACGA | 105 |
R: AAAGCTGTTTCCCCATTGGC | |||
COL1A2 | NP_001073182.2 | F: CCAGAATGGAGCAGCGGTTT | 163 |
R: TGTCCTTGGGGTTCTTGCTG | |||
COL1A1 | NP_001383551.1 | F: CGACGGCTTCCAGTTTGAGT | 119 |
R: TGCAGTGGTAGGTGACGTTC | |||
SPARC | NP_989741.2 | F: TTCTTTGAGGCCTGCGACTT | 94 |
R: CCTTGTCTATGTCCTGCTCCT | |||
DCN | NP_001025918.2 | F: TGAGCTTCACCTTGATGGCA | 92 |
R: TGAAGCTGAGACCCAATTTAGC | |||
LBR | NP_001383068.1 | F: GGTGTGGGTTCCATTTGTCTACA | 80 |
R: CTGCAACCGGCCAAGAAA |
表 2
转录组数据质量评估及高质量序列与参考基因组比对结果"
样品 Sample | 有效数据/条 Clean reads | GC含量/% GC content | Q20/% | Q30/% | 比对率/% Mapped reads rate |
15-2 | 55 522 890 | 49.39 | 97.38 | 93.80 | 85.56 |
15-23 | 148 259 264 | 50.26 | 97.47 | 94.11 | 85.85 |
15-32 | 85 701 896 | 50.04 | 97.50 | 94.03 | 76.52 |
15-33 | 47 345 806 | 50.14 | 97.62 | 94.51 | 83.68 |
15-42 | 66 035 028 | 49.16 | 97.38 | 93.85 | 82.87 |
15-43 | 48 688 256 | 50.22 | 97.66 | 94.50 | 80.74 |
22-2 | 97 043 162 | 49.20 | 97.53 | 93.82 | 83.13 |
22-32 | 108 833 720 | 48.42 | 96.84 | 92.18 | 90.24 |
22-38 | 43 688 004 | 49.92 | 97.49 | 94.06 | 80.56 |
22-44 | 86 418 652 | 49.83 | 97.53 | 94.06 | 82.12 |
22-75 | 186 154 554 | 49.63 | 97.48 | 94.00 | 90.55 |
22-94 | 40 082 240 | 49.62 | 97.21 | 93.41 | 81.45 |
表 3
15和22周龄蛋鸡骨代谢相关关键候选基因信息"
基因 Gene | P值 P value | log2(FC) | 通路 Pathway | 功能 Function | 趋势 Trend |
PDGFA | 0.000 331 | -1.902 04 | MAPK信号通路、 | 胶原结合 | 22周龄下调 |
PDGFC | 0.000 197 | -1.357 02 | PI3K-Akt信号通路 | 细胞外泌体 | 22周龄下调 |
PDGFB | 0.002 592 | 1.344 908 | 胶原结合 | 22周龄上调 | |
FGF10 | 0.002 682 | 1.659 565 | 肝素结合、细胞外基质 | 22周龄上调 | |
FGFR3 | 0.005 87 | -1.563 08 | 内质网 | 22周龄下调 | |
VEGFD | 0.001 986 | 1.889 158 | - | 22周龄上调 | |
PDGFD | 0.000 006 | -1.595 8 | 细胞外泌体 | 22周龄下调 | |
CSF1 | 0.001 241 | 1.456 194 | - | 22周龄上调 | |
ANGPT2 | 0.000 316 | -1.391 21 | - | 22周龄下调 | |
SOS1 | 0.004 797 | 0.776 605 | - | 22周龄上调 | |
FGFR1 | 0.000 003 | -1.980 24 | 肝素结合 | 22周龄下调 | |
NR4A1 | 0.003 716 | 2.293 577 | - | 22周龄上调 | |
THBS1 | 0.000 004 | -2.284 11 | TGF-β信号通路、PI3K-Akt信号通路 | 细胞外泌体、肝素结合、钙离子结合、细胞外基质 | 22周龄下调 |
SPON1 | 0.005 25 | -1.412 02 | 细胞外基质 | 22周龄下调 | |
FDFT1 | 0.000 005 | 1.312 108 | 类固醇生物合成、倍半萜及 | 内质网 | 22周龄上调 |
SQLE | 0.000 010 | 3.008 19 | 三萜生物合成 | - | 22周龄上调 |
TGFB3 | 0.001 093 | -1.011 22 | TGF-β信号通路、 | - | 22周龄下调 |
TGFBR2 | 0.005 073 | 1.120 741 | MAPK信号通路 | - | 22周龄上调 |
1 | WEIH D,CHENY Q,NIANH Y,et al.Abnormal bone metabolism may be a primary causative factor of keel bone fractures in laying hens[J].Animals (Basel),2021,11(11):3133. |
2 |
ALFONSO-CARRILLOC,BENAVIDES-REYESC,DE LOS MOZOSJ,et al.Relationship between bone quality, egg production and eggshell quality in laying hens at the end of an extended production cycle (105 Weeks)[J].Animals,2021,11(3):623.
doi: 10.3390/ani11030623 |
3 |
YUEQ X,HUANGC X,ZHOUR Y,et al.Integrated transcriptomic and metabolomic analyses reveal potential regulatory pathways regulating bone metabolism pre- and postsexual maturity in hens[J].Poult Sci,2024,103(4):103555.
doi: 10.1016/j.psj.2024.103555 |
4 |
BAINM M,NYSY,DUNNI C.Increasing persistency in lay and stabilising egg quality in longer laying cycles. What are the challenges?[J].Brit Poult Sci,2016,57(3):330-338.
doi: 10.1080/00071668.2016.1161727 |
5 |
CRANSBERGP H,PARKINSONG B,WILSONS,et al.Sequential studies of skeletal calcium reserves and structural bone volume in a commercial layer flock[J].Brit Poult Sci,2001,42(2):260-265.
doi: 10.1080/00071660120048528 |
6 |
DUNNI C,DE KONINGD J,MCCORMACKH A,et al.No evidence that selection for egg production persistency causes loss of bone quality in laying hens[J].Genet Sel Evol,2021,53(1):11.
doi: 10.1186/s12711-021-00603-8 |
7 |
HESTERP Y,WILSOND A,SETTARP,et al.Effect of lighting programs during the pullet phase on skeletal integrity of egg-laying strains of chickens[J].Poult Sci,2011,90(8):1645-1651.
doi: 10.3382/ps.2011-01411 |
8 |
XINQ,MAN,JIAOH C,et al.Dietary energy and protein levels during the prelay period on production performance, egg quality, expression of genes in hypothalamus-pituitary-ovary axis, and bone parameters in aged laying hens[J].Front Physiol,2022,13,887381.
doi: 10.3389/fphys.2022.887381 |
9 |
WEIH D,BIY J,WANGY L,et al.Serum bone remodeling parameters and transcriptome profiling reveal abnormal bone metabolism associated with keel bone fractures in laying hens[J].Poult Sci,2023,102(4):102438.
doi: 10.1016/j.psj.2022.102438 |
10 |
RENY C,LIUY P,JIANGK X,et al.Effects of low-phosphorus diets supplemented with Phytase on the production performance, phosphorus-calcium metabolism, and bone metabolism of aged Hy-line Brown laying hens[J].Animals,2023,13(6):1042.
doi: 10.3390/ani13061042 |
11 | JIANGS,ZOUX Y,MAOM,et al.Low Ca diet leads to increased Ca retention by changing the gut flora and ileal pH value in laying hens[J].Anim Nutr,2023,(13):270-281. |
12 |
ZHANGH Y,WANGY S,WANGY L,et al.Fermented calcium butyrate supplementation in post-peak laying hens improved ovarian function and tibia quality through the "gut-bone" axis[J].Anim Nutr,2024,16,350-362.
doi: 10.1016/j.aninu.2023.10.008 |
13 |
LID F,WUY F,SHIK,et al.Untargeted metabolomics reveals the effect of rearing systems on bone quality parameters in chickens[J].Front Genet,2023,13,1071562.
doi: 10.3389/fgene.2022.1071562 |
14 |
YUEQ X,CHENY,CHENH,et al.Transcriptome profile reveals novel candidate genes associated with bone strength in end-of-lay hens[J].Anim Biotechnol,2023,34(7):3099-3107.
doi: 10.1080/10495398.2022.2134884 |
15 | Farm Animal Welfare Council. Opinion on osteoporosis and bone fractures in laying hens[R]. 2010: 14. |
16 | RIBERA B,CASEY-TROTTT M,HERSKINM S.The influence of keel bone damage on welfare of laying hens[J].Front Vet Sci,2018,(5):6. |
17 |
YAMADAM,CHENC X,SUGIYAMAT,et al.Effect of age on bone structure parameters in laying hens[J].Animals,2021,11(2):570.
doi: 10.3390/ani11020570 |
18 |
HANLONC,ZIEZOLDC J,BÉDÉCARRATSG Y.The diverse roles of 17β-estradiol in non-gonadal tissues and its consequential impact on reproduction in laying and broiler breeder hens[J].Front Physiol,2022,13,942790.
doi: 10.3389/fphys.2022.942790 |
19 |
YASUDAH.Discovery of the RANKL/RANK/OPG system[J].J Bone Miner Metab,2021,39(1):2-11.
doi: 10.1007/s00774-020-01175-1 |
20 | WANGJ S,MAZURC M,WEINM N.Sclerostin and osteocalcin: candidate bone-produced hormones[J].Front Endocrinol,2021,(12):584147. |
21 |
CANOVILLEA,ZANNOL E,ZHENGW X,et al.Keratan sulfate as a marker for medullary bone in fossil vertebrates[J].J Anat,2021,238(6):1296-1311.
doi: 10.1111/joa.13388 |
22 |
WANGX B,FORDB C,PRAULC A,et al.Characterization of the non-collagenous proteins in avian cortical and medullary bone[J].Comp Biochem Phys B: Biochem Molecul Biol,2005,140(4):665-672.
doi: 10.1016/j.cbpc.2005.01.010 |
23 |
郭军鹏,张兆鹏,孟庆楠,等.人参总皂苷对老年性骨质疏松大鼠血清吡啶酚和骨钙素水平的影响[J].中国老年学杂志,2020,40(3):614-615.
doi: 10.3969/j.issn.1005-9202.2020.03.049 |
GUOJ P,ZHANGZ P,MENGQ N,et al.Effect of the total ginsenoside on pyridine and OPG levels in serum of aged osteoporosis rats[J].Chinese Journal of Gerontology,2020,40(3):614-615.
doi: 10.3969/j.issn.1005-9202.2020.03.049 |
|
24 | 曾俊铭,贺小宁.骨涎蛋白在破骨细胞分化和骨吸收中的研究进展[J].海南医学院学报,2023,29(18):1425-1429. |
ZENGJ M,HEX N.Research progress of bone sialoprotein in osteoclast differentiation and bone resorption[J].Journal of Hainan Medical University,2023,29(18):1425-1429. | |
25 |
TAYLORA C,HORVAT-GORDONM,MOOREA,et al.The effects of melatonin on the physical properties of bones and egg shells in the laying hen[J].PLoS One,2013,8(2):e55663.
doi: 10.1371/journal.pone.0055663 |
26 |
BARA.Calcium homeostasis and vitamin D metabolism and expression in strongly calcifying laying birds[J].Comp Biochem Physiol A: Mol Integr Physiol,2008,151(4):477-490.
doi: 10.1016/j.cbpa.2008.07.006 |
27 | GLOUXA,LE ROYN,EZAGALJ,et al.Possible roles of parathyroid hormone, 1.25(OH)2D3, and fibroblast growth factor 23 on genes controlling calcium metabolism across different tissues of the laying hen[J].Domest Anim Endocrinol,2020,(72):106407. |
28 | HABIGC,WEIGENDA,BAULAINU,et al.Influence of age and phylogenetic background on blood parameters associated with bone metabolism in laying hens[J].Front Physiol,2021,(12):678054. |
29 |
YANJ K,WANGJ J,CHENJ,et al.Adjusting phosphate feeding regimen according to daily rhythm increases eggshell quality via enhancing medullary bone remodeling in laying hens[J].J Anim Sci Biotechnol,2023,14(1):17.
doi: 10.1186/s40104-023-00829-0 |
30 |
FARAONIE Y,CAMILLETTIM A,ABELEDO-MACHADOA,et al.Sex differences in the development of prolactinoma in mice overexpressing hCGβ: role of TGFβ1[J].J Endocrinol,2017,232(3):535-546.
doi: 10.1530/JOE-16-0371 |
31 |
MAC,WANGZ Z,MOL,et al.Tanshinone I attenuates estrogen-deficiency bone loss via inhibiting RANKL-induced MAPK and NF-κB signaling pathways[J].Int Immunopharmacol,2024,127,111322.
doi: 10.1016/j.intimp.2023.111322 |
32 |
XUK,FEIW C,GAOW X,et al.SOD3 regulates FLT1 to affect bone metabolism by promoting osteogenesis and inhibiting adipogenesis through PI3K/AKT and MAPK pathways[J].Free Radical Biol Med,2024,212,65-79.
doi: 10.1016/j.freeradbiomed.2023.12.021 |
33 |
CHOH W,JINH S,EOMY B.FGFRL1 and FGF genes are associated with height, hypertension, and osteoporosis[J].PLoS One,2022,17(8):e0273237.
doi: 10.1371/journal.pone.0273237 |
34 |
LIAOF C,LIAOZ Q,ZHANGT,et al.ECFC-derived exosomal THBS1 mediates angiogenesis and osteogenesis in distraction osteogenesis via the PI3K/AKT/ERK pathway[J].J Orthop Translat,2022,37,12-22.
doi: 10.1016/j.jot.2022.08.004 |
35 |
BRUNJ,ANDREASENC M,EJERSTEDC,et al.PDGF receptor signaling in osteoblast lineage cells controls bone resorption through upregulation of Csf1 expression[J].J Bone Miner Res,2020,35(12):2458-2469.
doi: 10.1002/jbmr.4150 |
[1] | 章琦, 郭江鹏, 倪爱心, 杜洪峰, 陈继兰, 孙研研. 蛋鸡啄羽行为的影响因素与遗传调控基础研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3745-3756. |
[2] | 于秀菊, 胡燕姣, 刘佳悦, 王海东, 朱芷葳, 范阔海, 王蓉蓉, 段承昊, 石佳炜, 杨丽华. 一株鸡源唾液乳杆菌的分离鉴定及其对育雏早期蛋鸡肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(9): 4161-4171. |
[3] | 张肖旭, 李昊, 冯平捷, 杨豪, 李新月, 吕冉, 潘章源, 储明星. 单细胞转录组测序技术在家养动物中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3276-3287. |
[4] | 陈静, 吴薛蓓, 苗冬枝, 张弛, 郭振玉, 王莹. 产蛋间隔前期鸽卵泡转录组比较分析揭示卵泡发育相关基因[J]. 畜牧兽医学报, 2024, 55(8): 3503-3515. |
[5] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
[6] | 李婉卿, 曾亚琦, 姚新奎, 王建文, 袁鑫鑫, 孟晨, 孙远方, 彭宣, 孟军. 肉用型伊犁马的血液转录组比较分析[J]. 畜牧兽医学报, 2024, 55(7): 2951-2962. |
[7] | 何明亮, 吕晓阳, 蒋永清, 宋正海, 王叶青, 杨会国, 王善禾, 孙伟. 基于转录组测序分析SOX18在湖羊毛囊毛乳头细胞中的功能[J]. 畜牧兽医学报, 2024, 55(6): 2409-2420. |
[8] | 李栋梁, 郑关民, 李帅, 朱洪森, 吴超. 猪流行性腹泻病毒感染仔猪空肠转录组差异表达分析[J]. 畜牧兽医学报, 2024, 55(6): 2652-2661. |
[9] | 王晓旭, 陈艳青, 张家麒, 王野, 王蕊, 于翰林, 杨凯淇, 包军, 张润祥. 爪趾皮肤炎对富集笼养蛋鸡生产性能、蛋品质、行为和免疫的影响[J]. 畜牧兽医学报, 2024, 55(6): 2680-2691. |
[10] | 陈哲, 曲小露, 郭彬彬, 孙雪峰, 闫乐艳. 基于转录组测序研究绿光影响鹅胚心脏早期发育的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1978-1988. |
[11] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
[12] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[13] | 片慧芳, 杜旭彬, 李妍, 张雨辰, 何惠, 虞德兵. 甜菜碱对产蛋后期蛋鸡生产性能、蛋品质和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(3): 1085-1094. |
[14] | 王鑫, 聂桐, 李阿群, 马隽. 橙皮苷通过氧化磷酸化途径缓解高脂饲喂诱导的小鼠肝氧化应激[J]. 畜牧兽医学报, 2024, 55(3): 1302-1313. |
[15] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||