[1] MORGAVI D P,KELLY W J,JANSSEN P H,et al.Rumen microbial (meta)genomics and its application to ruminant production[J].Animal,2013,7(S1):184-201. [2] RANAVA D,BACKES C,KARTHIKEYAN G,et al.Metabolic exchange and energetic coupling between nutritionally stressed bacterial species:role of quorum-sensing molecules[J].mBio,2021,12(1):e02758-20. [3] MCNAB R,LAMONT R J.Microbial dinner-party conversations:the role of LuxS in interspecies communication[J].J Med Microbiol,2003,52(Pt 7):541-545. [4] WANG Y S,BIAN Z R,WANG Y.Biofilm formation and inhibition mediated by bacterial quorum sensing[J].Appl Microbiol Biotechnol,2022,106(19):6365-6381. [5] MITSUMORI M,XU L M,KAJIKAWA H,et al.Possible quorum sensing in the rumen microbial community:detection of quorum-sensing signal molecules from rumen bacteria[J].FEMS Microbiol Lett,2003,219(1):47-52. [6] WON M Y,OYAMA L B,COURTNEY S J,et al.Can rumen bacteria communicate to each other?[J].Microbiome,2020,8(1):23. [7] MILLER S T,XAVIER K B,CAMPAGNA S R,et al.Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2[J].Mol Cell,2004,15(5):677-687. [8] MIRANDA V,TORCATO I M,XAVIER K B,et al.Synthesis of d-desthiobiotin-AI-2 as a novel chemical probe for autoinducer-2 quorum sensing receptors[J].Bioorg Chem,2019,92:103200. [9] SCHAUDER S,SHOKAT K,SURETTE M G,et al.The LuxS family of bacterial autoinducers:biosynthesis of a novel quorum-sensing signal molecule[J].Mol Microbiol,2001,41(2):463-476. [10] TORCATO I M,KASAL M R,BRITO P H,et al.Identification of novel autoinducer-2 receptors in Clostridia reveals plasticity in the binding site of the LsrB receptor family[J].J Biol Chem,2019,294(12):4450-4463. [11] NEIDITCH M B,FEDERLE M J,MILLER S T,et al.Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2[J].Mol Cell,2005,18(5):507-518. [12] CHEN X,SCHAUDER S,POTIER N,et al.Structural identification of a bacterial quorum-sensing signal containing boron[J].Nature,2002,415(6871):545-549. [13] RAJAMANI S,ZHU J G,PEI D H,et al.A LuxP-FRET-based reporter for the detection and quantification of AI-2 bacterial quorum-sensing signal compounds[J].Biochemistry,2007,46(13):3990-3997. [14] LAGANENKA L,LEE J W,MALFERTHEINER L,et al.Chemotaxis and autoinducer-2 signalling mediate colonization and contribute to co-existence of Escherichia coli strains in the murine gut[J].Nat Microbiol,2023,8(2):204-217. [15] KEIZERS M,DOBRINDT U,BERGER M.A simple biosensor-based assay for quantitative autoinducer-2 analysis[J].ACS Synth Biol,2022,11(2):747-759. [16] KUMAR S,KUMAR C B,RAJENDRAN V,et al.Delineating virulence of Vibrio campbellii:a predominant luminescent bacterial pathogen in Indian shrimp hatcheries[J].Sci Rep,2021,11(1):15831. [17] BISWAS S,MUKHERJEE P,MANNA T,et al.Quorum sensing autoinducer(s) and flagellum independently mediate EPS signaling in Vibrio cholerae through LuxO-independent mechanism[J].Microb Ecol,2019,77(3):616-630. [18] TALÀ A,SIDE D D,BUCCOLIERI G,et al.Exposure to static magnetic field stimulates quorum sensing circuit in luminescent Vibrio strains of the Harveyi clade[J].PLoS One,2014,9(6):e100825. [19] GU Y,LI B,TIAN J J,et al.The response of LuxS/AI-2 quorum sensing in Lactobacillus fermentum 2-1 to changes in environmental growth conditions[J].Ann Microbiol,2018,68(5):287-294. [20] CHAI Y M,MA Q W,NONG X,et al.Dissecting LuxS/AI-2 quorum sensing system-mediated phenyllactic acid production mechanisms of Lactiplantibacillus plantarum L3[J].Food Res Int,2023,166:112582. [21] AQAWI M,SIONOV R V,FRIEDMAN M,et al.The antibacterial effect of cannabigerol toward Streptococcus mutans is influenced by the autoinducers 21-CSP and AI-2[J].Biomedicines,2023,11(3):668. [22] MENG F Q,ZHAO M W,LU Z X.The LuxS/AI-2 system regulates the probiotic activities of lactic acid bacteria[J].Trends Food Sci Technol,2022,127:272-279. [23] HERZOG R,PESCHEK N,FRÖHLICH K S,et al.Three autoinducer molecules act in concert to control virulence gene expression in Vibrio cholerae[J].Nucleic Acids Res,2019,47(6):3171-3183. [24] BRIDGES A A,BASSLER B L.The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal[J].PLoS Biol,2019,17(11):e3000429. [25] BOYACI H,SHAH T,HURLEY A,et al.Structure,regulation,and inhibition of the quorum-sensing signal integrator LuxO[J].PLoS Biol,2016,14(5):e1002464. [26] RAYCHAUDHURI S,JAIN V,DONGRE M.Identification of a constitutively active variant of LuxO that affects production of HA/protease and biofilm development in a non-O1,non-O139 Vibrio cholerae O110[J].Gene,2006,369:126-133. [27] TAGA M E,MILLER S T,BASSLER B L.Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium[J].Mol Microbiol,2003,50(4):1411-1427. [28] TAGA M E,SEMMELHACK J L,BASSLER B L.The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium[J].Mol Microbiol,2001,42(3):777-793. [29] TAGA M E,BASSLER B L.Chemical communication among bacteria[J].Proc Natl Acad Sci U S A,2003,100(S2):14549-14554. [30] TOLKER-NIELSEN T.Biofilm development[M]//GHANNOUM M,PARSEK M,WHITELEY M,et al.Microbial Biofilms.2nd ed.Washington:American Society for Microbiology,2015:51-66. [31] KOLTER R,GREENBERG E P.Microbial sciences:the superficial life of microbes[J].Nature,2006,441(7091):300-302. [32] CHU P L,FENG Y M,LONG Z Q,et al.Novel benzothiazole derivatives as potential anti-quorum sensing agents for managing plant bacterial diseases:synthesis,antibacterial activity assessment,and SAR study[J].J Agric Food Chem,2023,71(17):6525-6540. [33] RYBTKE M,HULTQVIST L D,GIVSKOV M,et al.Pseudomonas aeruginosa biofilm infections:community structure,antimicrobial tolerance and immune response[J].J Mol Biol,2015,427(23):3628-3645. [34] HÄUSSLER S,BECKER T.The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations[J].PLoS Pathog,2008,4(9):e1000166. [35] VENDEVILLE A,WINZER K,HEURLIER K,et al.Making ’sense’ of metabolism:autoinducer-2,LuxS and pathogenic bacteria[J].Nat Rev Microbiol,2005,3(5):383-396. [36] WANG Y,WANG Y X,SUN L Y,et al.The LuxS/AI-2 system of Streptococcus suis[J].Appl Microbiol Biotechnol,2018,102(17):7231-7238. [37] WANG Y,YI L,ZHANG Z C,et al.Overexpression of luxS cannot increase autoinducer-2 production,only affect the growth and biofilm formation in Streptococcus suis[J].Sci World J,2013,2013:924276. [38] LAGANENKA L,COLIN R,SOURJIK V.Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli[J].Nat Commun,2016,7(1):12984. [39] HEGDE M,ENGLERT D L,SCHROCK S,et al.Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein[J].J Bacteriol,2011,193(3):768-773. [40] WEN Y C,HUANG H M,TANG T C,et al.AI-2 represses CagA expression and bacterial adhesion,attenuating the Helicobacter pylori-induced inflammatory response of gastric epithelial cells[J].Helicobacter,2021,26(2):e12778. [41] ANDERSON J K,HUANG J Y,WREDEN C,et al.Chemorepulsion from the quorum signal autoinducer-2 promotes Helicobacter pylori biofilm dispersal[J].mBio,2015,6(4):e00379. [42] CLUZEL M E,ZANELLA-CLE?ON I,COZZONE A J,et al.The Staphylococcus aureus autoinducer-2 synthase LuxS is regulated by Ser/Thr phosphorylation[J].J Bacteriol,2010,192(23):6295-6301. [43] ZHANG L J,SHEN Y,QIU L L,et al.The suppression effect of SCH-79797 on Streptococcus mutans biofilm formation[J].J Oral Microbiol,2022,14(1):2061113. [44] SZTAJER H,LEMME A,VILCHEZ R,et al.Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation[J].J Bacteriol,2008,190(1):401-415. [45] RODRIGUES M V,KIS P,XAVIER K B,et al.Synthesis and potential of Autoinducer-2 and analogs to manipulate inter-species quorum sensing[J].ISR J Chem,2023,63(5-6):e202200091. [46] MAYER C,BORGES A,FLAMENT-SIMON S C,et al.Quorum sensing architecture network in Escherichia coli virulence and pathogenesis[J].FEMS Microbiol Rev,2023,47(4):fuad031. [47] SLATER R T,FROST L R,JOSSI S E,et al.Clostridioides difficile LuxS mediates inter-bacterial interactions within biofilms[J].Sci Rep,2019,9:9903. [48] ARENAS J,TOMMASSEN J.Meningococcal biofilm formation:Let’s stick together[J].Trends Microbiol,2017,25(2):113-124. [49] ROUSSEL-JAZÉDÉ V,GRIJPSTRA J,VAN DAM V,et al.Lipidation of the autotransporter NalP of Neisseria meningitidis is required for its function in the release of cell-surface-exposed proteins[J].Microbiology (Reading),2013,159(Pt 2):286-295. [50] ROUSSEL-JAZÉDÉ V,JONGERIUS I,BOS M P,et al.NalP-mediated proteolytic release of lactoferrin-binding protein B from the meningococcal cell surface[J].Infect Immun,2010,78(7):3083-3089. [51] VAN ULSEN P,VAN ALPHEN L,HOVE J T,et al.A Neisserial autotransporter NalP modulating the processing of other autotransporters[J].Mol Microbiol,2003,50(3):1017-1030. [52] PENG N,CAI P,MORTIMER M,et al.The exopolysaccharide-eDNA interaction modulates 3D architecture of Bacillus subtilis biofilm[J].BMC Microbiol,2020,20:115. [53] HOBLEY L,HARKINS C,MACPHEE C E,et al.Giving structure to the biofilm matrix:an overview of individual strategies and emerging common themes[J].FEMS Microbiol Rev,2015,39(5):649-669. [54] GU Y,TIAN J J,ZHANG Y,et al.Dissecting signal molecule AI-2 mediated biofilm formation and environmental tolerance in Lactobacillus plantarum[J].J Biosci Bioeng,2021,131(2):153-160. [55] MUHAMMAD M H,IDRIS A L,FAN X,et al.Beyond risk:bacterial biofilms and their regulating approaches[J].Front Microbiol,2020,11:928. [56] KRAGH K N,HUTCHISON J B,MELAUGH G,et al.Role of multicellular aggregates in biofilm formation[J].mBio,2016,7(2):e00237. [57] NUNAN N,WU K J,YOUNG I M,et al.Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil[J].FEMS Microbiol Ecol,2003,44(2):203-215. [58] SUGIMOTO S,OKUDA K I,MIYAKAWA R,et al.Imaging of bacterial multicellular behaviour in biofilms in liquid by atmospheric scanning electron microscopy[J].Sci Rep,2016,6:25889. [59] LIU X Z,LIU Q M,SUN S H,et al.Exploring AI-2-mediated interspecies communications within rumen microbial communities[J].Microbiome,2022,10:167. [60] GHALI I,SHINKAI T,MITSUMORI M.Mining of luxS genes from rumen microbial consortia by metagenomic and metatranscriptomic approaches[J].Anim Sci J,2016,87(5):666-673. [61] XIE Y Y,SUN H Z,XUE M Y,et al.Metagenomics reveals differences in microbial composition and metabolic functions in the rumen of dairy cows with different residual feed intake[J].Anim Microbiome,2022,4(1):19. [62] LI Q S,WANG R,MA Z Y,et al.Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants[J].ISME J,2022,16(11):2535-2546. [63] 郭海康,万发春,沈维军,等.畜禽消化道细菌群体感应及相关调控技术研究进展[J].畜牧兽医学报,2022,53(6):1678-1688. GUO H K,WAN F C,SHEN W J,et al.Research progress and related regulation technology on bacterial quorum sensing in the gastro-intestinal tract of livestock and poultry[J].Acta Veterinaria et Zootechnica Sinica,2022,53(6):1678-1688.(in Chinese) [64] 冉 涛,谭支良.反刍家畜瘤胃微生物群体感应[J].动物营养学报,2012,24(7):1207-1215. RAN T,TAN Z L.Rumen microbial quorum-sensing of ruminant livestock[J].Chinese Journal of Animal Nutrition,2012,24(7):1207-1215.(in Chinese) [65] VAHIDI M F,GHARECHAHI J,BEHMANESH M,et al.Diversity of microbes colonizing forages of varying lignocellulose properties in the sheep rumen[J].PeerJ,2021,9:e10463. [66] COMTET-MARRE S,PARISOT N,LEPERCQ P,et al.Metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet[J].Front Microbiol,2017,8:67. [67] MINATO H,ENDO A,OOTOMO Y,et al.Ecological treatise on the rumen fermentation:II.The amylolytic and cellulolytic activities of the fractionated bacterial portions attached to the rumen solids[J].J Gen Appl Microbiol,1966,12(1):53-69. [68] CHENG K J,STEWART C S,DINSDALE D,et al.Electron microscopy of bacteria involved in the digestion of plant cell walls[J].Anim Feed Sci Technol,1984,10(2-3):93-120. [69] MOSONI P,FONTY G,GOUET P.Competition between ruminal cellulolytic bacteria for adhesion to cellulose[J].Ann Zootech,1996,45(S1):298. [70] KOIKE S,PAN J,KOBAYASHI Y,et al.Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR[J].J Dairy Sci,2003,86(4):1429-1435. [71] BAR-ZEEV E,BERMAN-FRANK I,GIRSHEVITZ O,et al.Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles[J].Proc Natl Acad Sci U S A,2012,109(23):9119-9124. [72] LENG R A.The rumen- a fermentation vat or a series of organized structured microbial consortia:implications for the mitigation of enteric methane production by feed additives[J].Livest Res Rural Dev,2011,23(12):258. [73] SPEZIALE P,PIETROCOLA G,FOSTER T J,et al.Protein-based biofilm matrices in Staphylococci[J].Front Cell Infect Microbiol,2014,4:171. [74] LENG R A.Interactions between microbial consortia in biofilms:a paradigm shift in rumen microbial ecology and enteric methane mitigation[J].Anim Prod Sci,2014,54(5):519-543. [75] MCCALL A,EDGERTON M.Real-time approach to flow cell imaging of Candida albicans biofilm development[J].J Fungi,2017,3(1):13. [76] HUWS S,MAYORGA O L,KIM E J,et al.Microbial colonization and subsequent biofilm formation by ruminal microorganisms on fresh perennial ryegrass[C]//2007 Conference on Gastrointestinal Function (CGIF).Chicago,2007. [77] XIROS C,SHAHAB R L,STUDER M H P.A cellulolytic fungal biofilm enhances the consolidated bioconversion of cellulose to short chain fatty acids by the rumen microbiome[J].Appl Microbiol Biotechnol,2019,103(8):3355-3365. [78] DOBRETSOV S,TEPLITSKI M,PAUL V.Mini-review:quorum sensing in the marine environment and its relationship to biofouling[J].Biofouling,2009,25(5):413-427. [79] HUWS S A,EDWARDS J E,LIN W C,et al.Microbiomes attached to fresh perennial ryegrass are temporally resilient and adapt to changing ecological niches[J].Microbiome,2021,9(1):143. [80] SOROKIN D Y,GUMEROV V M,RAKITIN A L,et al.Genome analysis of Chitinivibrio alkaliphilus gen.nov.,sp.nov.,a novel extremely haloalkaliphilic anaerobic chitinolytic bacterium from the candidate phylum Termite Group 3[J].Environ Microbiol,2014,16(6):1549-1565. [81] SUEN G,WEIMER P J,STEVENSON D M,et al.The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist[J].PLoS One,2011,6(4):e18814. [82] RAHMAN N A,PARKS D H,VANWONTERGHEM I,et al.A phylogenomic analysis of the bacterial phylum Fibrobacteres[J].Front Microbiol,2016,6:1469. [83] SHABAT S K B,SASSON G,DORON-FAIGENBOIM A,et al.Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants[J].ISME J,2016,10(12):2958-2972. |