畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (10): 4233-4246.doi: 10.11843/j.issn.0366-6964.2023.10.021
武殿阁, 夏苗, 颜安, 江皓天, 樊佳奇, 周思源, 韦旭, 刘树栋*, 陈宝江*
收稿日期:
2023-02-09
出版日期:
2023-10-23
发布日期:
2023-10-26
通讯作者:
刘树栋,主要从事动物营养与饲料研究,E-mail:liushudong818@163.com;陈宝江,主要从事动物营养与饲料研究,E-mail:chenbaojiang@vip.sina.com
作者简介:
武殿阁(1997-),男,河北邢台人,硕士,主要从事动物营养与饲料研究,E-mail:510889775@qq.com.
基金资助:
WU Diange, XIA Miao, YAN An, JIANG Haotian, FAN Jiaqi, ZHOU Siyuan, WEI Xu, LIU Shudong*, CHEN Baojiang*
Received:
2023-02-09
Online:
2023-10-23
Published:
2023-10-26
摘要: 本试验旨在研究香芹酚对肉兔生长性能、养分表观消化率、肠道形态结构、短链脂肪酸、肠道菌群结构和肠道菌群代谢通路的影响。选取160只35日龄健康伊拉肉兔,随机分为4组,每组40个重复,每个重复1只,对照组(CON组)饲喂基础饲粮,试验组(T1、T2、T3组)分别饲喂含有100、200和300 g·t-1香芹酚的试验饲粮。预试期5 d,正试期28 d。结果表明:1)与CON组相比,T1和T2组肉兔平均日增重和平均日采食量均显著提高(P<0.05),T1组的腹泻频率和死亡率显著降低(P<0.05),T1组的末重显著提高(P<0.05)。2) T1、T2和T3组的粗蛋白质表观消化率显著高于CON组(P<0.05)。3) T1、T2和T3组的回肠绒毛高度和黏膜厚度较CON组显著升高(P<0.05),且T1和T2组的回肠绒毛高度与隐窝深度的比值显著高于CON组(P<0.05)。4) T1组盲肠中的丁酸含量显著高于CON组(P<0.05)。5) T1、T2和T3组的盲肠中厚壁菌门和颤螺菌属的相对丰度较CON组显著升高(P<0.05),T1、T2和T3组的拟杆菌门相对丰度较CON组显著降低(P<0.05)。6)与CON组相比,T1组盲肠菌群代谢通路的类固醇激素合成、糖胺聚糖的降解、次生胆汁酸合成、初级胆汁酸合成、泛素酮等萜类醌的生物合成、N-聚糖合成和酮体的合成与降解显著上调(P<0.05),鞘脂类代谢和脂多糖合成显著下调(P<0.05)。综上说明,饲粮中添加香芹酚能够提高肉兔的生长性能和养分表观消化率,改善回肠形态结构,增加盲肠中丁酸的含量,改善盲肠菌群结构并对盲肠菌群的代谢通路有正向调节作用。在本试验条件下,综合香芹酚对肉兔的影响,推荐香芹酚添加量为100 g·t-1。
中图分类号:
武殿阁, 夏苗, 颜安, 江皓天, 樊佳奇, 周思源, 韦旭, 刘树栋, 陈宝江. 香芹酚对肉兔生长性能、养分表观消化率及肠道形态、短链脂肪酸含量和菌群相关指标的影响[J]. 畜牧兽医学报, 2023, 54(10): 4233-4246.
WU Diange, XIA Miao, YAN An, JIANG Haotian, FAN Jiaqi, ZHOU Siyuan, WEI Xu, LIU Shudong, CHEN Baojiang. Effects of Carvacrol on Growth Performance, Nutrient Apparent Digestibility, Intestinal Morphology, Short-chain Fatty Acids Content and Intestinal Flora in Rabbits[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4233-4246.
[1] | 武拉平, 王建勋, 秦应和.2021年兔产业生产概况、2022年发展趋势及政策建议[J].中国畜牧杂志, 2022, 58(3):280-284.WU L P, WANG J X, QIN Y H.Overview of rabbit industry production in 2021, development trend and policy suggestions in 2022[J].Chinese Journal of Animal Science, 2022, 58(3):280-284.(in Chinese) |
[2] | 陈文彬.甘草多糖对肉鸡生长性能、免疫功能和肠道健康的影响[D].洛阳:河南科技大学, 2022:1-63.CHEN W B.Effects of glycyrrhiza polysaccharides on growth performance, immunologic function and intestinal health of broilers[D].Luoyang:Henan University of Science and Technology, 2022:1-63.(in Chinese) |
[3] | GHOLAMI-AHANGARAN M, AHMADI-DASTGERDI A, AZIZI S, et al.Thymol and carvacrol supplementation in poultry health and performance[J].Vet Med Sci, 2022, 8(1):267-288. |
[4] | DI PASQUA R, MAMONE G, FERRANTI P, et al.Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol[J].Proteomics, 2010, 10(5):1040-1049. |
[5] | ALAGAWANY M, EL-HACK M E A, FARAG M R, et al.Biological effects and modes of action of carvacrol in animal and poultry production and health-a review[J].Adv Anim Vet Sci, 2015, 3(S2):73-84. |
[6] | LIU S D, SONG M H, YUN W, et al.Effect of carvacrol essential oils on immune response and inflammation-related genes expression in broilers challenged by lipopolysaccharide[J].Poult Sci, 2019, 98(5):2026-2033. |
[7] | DE BLAS C, WISEMAN J.Nutrition of the rabbit[M].3rd ed.Boston:CABI Publishing, 2020. |
[8] | 张丽英.饲料分析及饲料质量检测技术[M].3版.北京:中国农业大学出版社, 2007:49-80.ZHANG L Y.Feed analysis and feed quality testing technology[M].3rd ed.Beijing:China Agricultural University, 2007:49-80.(in Chinese) |
[9] | 张 勤.水牛和娟姗牛对粗饲料消化的差异比较及其差异的微生物机制研究[D].南宁:广西大学, 2016:1-104.ZHANG Q.Comparation of forage digestibility between water buffalo and jersey cow and research on ruminal microbial mechanism of the difference[D].Nanning:Guangxi University, 2016:1-104.(in Chinese) |
[10] | XIONG X, TAN B, SONG M, et al.Nutritional intervention for the intestinal development and health of weaned pigs[J].Front Vet Sci, 2019, 6:46. |
[11] | HU C H, XIAO K, LUAN Z S, et al.Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs[J].J Anim Sci, 2013, 91(3):1094-1101. |
[12] | MOESER A J, POHL C S, RAJPUT M.Weaning stress and gastrointestinal barrier development:implications for lifelong gut health in pigs[J].Anim Nutr, 2017, 3(4):313-321. |
[13] | ZHAI S S, LI M M, LI M M, et al.Effect of dietary Moringa stem meal level on growth performance, slaughter performance and serum biochemical parameters in geese[J].J Anim Physiol Anim Nutr (Berl), 2020, 104(1):126-135. |
[14] | HASHEMIPOUR H, KERMANSHAHI H, GOLIAN A, et al.Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens[J].Poult Sci, 2013, 92(8):2059-2069. |
[15] | BRENES A, ROURA E.Essential oils in poultry nutrition:main effects and modes of action[J].Anim Feed Sci Tech, 2010, 158(1-2):1-14. |
[16] | GATICA S, ELTIT F, SANTIBANEZ J F, et al.Expression suppression and activity inhibition of TRPM7 regulate cytokine production and multiple organ dysfunction syndrome during endotoxemia:a new target for sepsis[J].Curr Mol Med, 2019, 19(8):547-559. |
[17] | XIAO K, CAO S T, JIAO L F, et al.TGF-β1 protects intestinal integrity and influences Smads and MAPK signal pathways in IPEC-J2 after TNF-α challenge[J].Innate Immun, 2017, 23(3):276-284. |
[18] | BIMCZOK D, RAU H, SEWEKOW E, et al.Influence of carvacrol on proliferation and survival of porcine lymphocytes and intestinal epithelial cells in vitro[J].Toxicol Vitro, 2008, 22(3):652-658. |
[19] | SUNTRES Z E, COCCIMIGLIO J, ALIPOUR M.The bioactivity and toxicological actions of carvacrol[J].Crit Rev Food Sci Nutr, 2015, 55(3):304-318. |
[20] | 郑 琛.不同处理饲粮及不同组合全饲粮颗粒料对绵羊瘤胃内环境和养分消化代谢的影响[D].兰州:甘肃农业大学, 2004:1-41.ZHENG C.Effects of different processed diet and complete diet pellets with different combinations on metabolic parameters of rumen fluid and metabolism of sheep[D].Lanzhou:Gansu Agricultural University, 2004:1-41.(in Chinese) |
[21] | 刘立山, 周 瑞, 吴建平, 等.香芹酚和百里香酚对绵羊养分表观消化率、瘤胃发酵特性及纤维降解菌数量的影响[J].动物营养学报, 2022, 34(1):478-487.LIU L S, ZHOU R, WU J P, et al.Effects of carvacrol and thymol on nutrient apparent digestibility, rumen fermentation characteristics and cellulose-decomposed bacteria counts of sheep[J].Chinese Journal of Animal Nutrition, 2022, 34(1):478-487.(in Chinese) |
[22] | 刘 慧.饲用蛋白酶研究进展[J].饲料博览, 2020(4):89.LIU H.Research progress of feeding protease[J].Feed Review, 2020(4):89.(in Chinese) |
[23] | FAN P X, SONG P X, LI L S, et al.Roles of biogenic amines in intestinal signaling[J].Curr Protein Pept Sci, 2017, 18(6):532-540. |
[24] | 刘福鑫, 孔繁根, 王国洲, 等.香芹酚对肉兔生长性能、养分表观消化率、肠道消化酶活性、免疫器官发育及抗氧化能力的影响[J].动物营养学报, 2022, 34(3):1875-1884.LIU F X, KONG F G, WANG G Z, et al.Effects of carvacrol on growth performance, nutrient apparent digestibilities, intestinal digestive enzyme activities, immune organ development and antioxidant capacity of meat rabbits[J].Chinese Journal of Animal Nutrition, 2022, 34(3):1875-1884.(in Chinese) |
[25] | 周 瑞, 郎 侠, 王彩莲, 等.饲粮中添加牛至精油对绵羊复胃发育、消化酶活性及瘤胃微生物区系的影响[J].动物营养学报, 2019, 31(4):1910-1918.ZHOU R, LANG X, WANG C L, et al.Effects of dietary oregano essential oil on complex stomach development, digestive enzyme activities and ruminal microflora of sheep[J].Chinese Journal of Animal Nutrition, 2019, 31(4):1910-1918.(in Chinese) |
[26] | 李 祥, 何金环, 潘春梅, 等.丁酸钠对肉鸡肠道形态与消化吸收功能影响的研究进展[J].中国畜牧兽医, 2021, 48(5):1603-1612.LI X, HE J H, PAN C M, et al.Research progress on effect of sodium butyrate on intestinal morphology, digestion and absorption function of broilers[J].China Animal Husbandry & Veterinary Medicine, 2021, 48(5):1603-1612.(in Chinese) |
[27] | QIN L S, JI W, WANG J L, et al.Effects of dietary supplementation with yeast glycoprotein on growth performance, intestinal mucosal morphology, immune response and colonic microbiota in weaned piglets[J].Food Funct, 2019, 10(5):2359-2371. |
[28] | BAHADORI M M, REZAEIPOUR V, ABDULLAHPOUR R, et al.Effects of sesame meal bioactive peptides, individually or in combination with a mixture of essential oils, on growth performance, carcass, jejunal morphology, and microbial composition of broiler chickens[J].Trop Anim Health Prod, 2022, 54(4):235. |
[29] | 张凯瑛.抗菌肽对肉鸡生长性能、养分利用率和肠道发育的影响[D].泰安:山东农业大学, 2021:1-50.ZHANG K Y.Effects of antimicrobial peptides on growth performance, nutrient availability and intestinal development of broilers[D].Taian:Shandong Agricultural University, 2021:1-50.(in Chinese) |
[30] | 王红玉, 黄丽萍.植源性饲料添加剂在家禽生产中的应用[J].中国家禽, 2017, 39(14):50-53.WANG H Y, HUANG L P.Application of phytogenic feed additives in poultry production[J].China Poultry, 2017, 39(14):50-53.(in Chinese) |
[31] | 张 玥.植物精油研究进展及其在禽类生产中的应用[J].饲料博览, 2021(10):11-16, 31.ZHANG Y.Research progress on plant essential oil and its application in poultry production[J].Feed Review, 2021(10):11-16, 31.(in Chinese) |
[32] | CORRÊA-OLIVEIRA R, FACHI J L, VIEIRA A, et al.Regulation of immune cell function by short-chain fatty acids[J].Clin Trans Immunology, 2016, 5(4):e73. |
[33] | CHANG Y H, JEONG C H, CHENG W N, et al.Quality characteristics of yogurts fermented with short-chain fatty acid-producing probiotics and their effects on mucin production and probiotic adhesion onto human colon epithelial cells[J].J Dairy Sci, 2021, 104(7):7415-7425. |
[34] | DUPRAZ L, MAGNIEZ A, ROLHION N, et al.Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells[J].Cell Rep, 2021, 36(1):109332. |
[35] | GAUDIER E, RIVAL M, BUISINE M P, et al.Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon[J].Physiol Res, 2009, 58(1):111-119. |
[36] | 周 瑞.牛至精油对羔羊胃肠道结构和功能及其微生物多样性的影响[D].兰州:甘肃农业大学, 2019:1-119.ZHOU R.The effects of oregano essential oil on gastrointestinal tract structure, function and microbiota diversity of lambs[D].Lanzhou:Gansu Agricultural University, 2019:1-119.(in Chinese) |
[37] | HAN S F, LIU Y C, ZHOU Z G, et al.Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences[J].Aquacult Res, 2010, 42(1):47-56. |
[38] | TIAN H C, LIANG Y, LIU G B, et al.Moringa oleifera polysaccharides regulates caecal microbiota and small intestinal metabolic profile in C57BL/6 mice[J].Int J Biol Macromol, 2021, 182:595-611. |
[39] | QIN J J, LI R Q, RAES J, et al.A human gut microbial gene catalogue established by metagenomic sequencing[J].Nature, 2010, 464(7285):59-65. |
[40] | LEY R E, BÄCKHED F, TURNBAUGH P, et al.Obesity alters gut microbial ecology[J].Proc Natl Acad Sci U S A, 2005, 102(31):11070-11075. |
[41] | MEIJNIKMAN A S, AYDIN O, PRODAN A, et al.Distinct differences in gut microbial composition and functional potential from lean to morbidly obese subjects[J].J Intern Med, 2020, 288(6):699-710. |
[42] | XU N, BAI X L, CAO X L, et al.Changes in intestinal microbiota and correlation with TLRs in ulcerative colitis in the coastal area of northern China[J].Microb Pathog, 2021, 150:104707. |
[43] | HUEY S L, YU E A, FINKELSTEIN J L, et al.Nutrition, inflammation, and the gut microbiota among outpatients with active tuberculosis disease in India[J].Am J Trop Med Hyg, 2021, 105(6):1645-1656. |
[44] | YIN J H, ZHOU C, YANG K Q, et al.Mutual regulation between butyrate and hypoxia-inducible factor-1α in epithelial cell promotes expression of tight junction proteins[J].Cell Biol Int, 2020, 44(6):1405-1414. |
[45] | XU D, ESKO J D.Demystifying heparan sulfate-protein interactions[J].Annu Rev Biochem, 2014, 83:129-157. |
[46] | SANDERSON R D.Heparan sulfate proteoglycans in invasion and metastasis[J].Semin Cell Dev Biol, 2001, 12(2):89-98. |
[47] | MIGUEZ P A, TERAJIMA M, NAGAOKA H, et al.Role of glycosaminoglycans of biglycan in BMP-2 signaling[J].Biochem Biophys Res Commun, 2011, 405(2):262-266. |
[48] | OLSSON U, ÖSTERGREN-LUNDÉN G, MOSES J.Glycosaminoglycan-lipoprotein interaction[J].Glycoconj J, 2001, 18(10):789-797. |
[49] | HLA T, DANNENBERG A J.Sphingolipid signaling in metabolic disorders[J].Cell Metab, 2012, 16(4):420-434. |
[50] | PONNUSAMY S, MEYERS-NEEDHAM M, SENKAL C E, et al.Sphingolipids and cancer:ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance[J].Future Oncol, 2010, 6(10):1603-1624. |
[51] | SUMMERS S A, CHAURASIA B, HOLLAND W L.Metabolic Messengers:ceramides[J].Nat Metab, 2019, 1(11):1051-1058. |
[52] | CHAURASIA B, SUMMERS S A.Ceramides in metabolism:key lipotoxic players[J].Annu Rev Physiol, 2021, 83:303-330. |
[53] | SCHWARTZ N, VERMA A, BIVENS C B, et al.Rapid steroid hormone actions via membrane receptors[J].Biochim Biophys Acta (BBA)-Mol Cell Res, 2016, 1863(9):2289-2298. |
[54] | BEATO M, CHÁVEZ S, TRUSS M.Transcriptional regulation by steroid hormones[J].Steroids, 1996, 61(4):240-251. |
[55] | MAZGAEEN L, GURUNG P.Recent advances in lipopolysaccharide recognition systems[J].Int J Mol Sci, 2020, 21(2):379. |
[56] | KONG L L, WANG Z H, XIAO C P, et al.Glycerol monolaurate attenuated immunological stress and intestinal mucosal injury by regulating the gut microbiota and activating AMPK/Nrf2 signaling pathway in lipopolysaccharide-challenged broilers[J].Anim Nutr, 2022, 10:347-359. |
[57] | POLS T W H, NOMURA M, HARACH T, et al.TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading[J].Cell Metab, 2011, 14(6):747-757. |
[58] | SINHA S R, HAILESELASSIE Y, NGUYEN L P, et al.Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J].Cell Host Microbe, 2020, 27(4):659-670.e5. |
[59] | PUCHALSKA P, CRAWFORD P A.Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics[J].Cell Metab, 2017, 25(2):262-284. |
[60] | NAGAO M, TOH R, IRINO Y, et al.β-Hydroxybutyrate elevation as a compensatory response against oxidative stress in cardiomyocytes[J].Biochem Biophys Res Commun, 2016, 475(4):322-328. |
[61] | HARGREAVES I, HEATON R A, MANTLE D.Disorders of human coenzyme Q10 metabolism:an overview[J].Int J Mol Sci, 2020, 21(18):6695. |
[62] | MANTLE D, HARGREAVES I.Coenzyme Q10 and degenerative disorders affecting longevity:an overview[J].Antioxidants (Basel), 2019, 8(2):44. |
[63] | DENNIS J W, NABI I R, DEMETRIOU M.Metabolism, cell surface organization, and disease[J].Cell, 2009, 139(7):1229-1241. |
[64] | MORTALES C L, LEE S U, DEMETRIOU M.N-glycan branching is required for development of mature B cells[J].J Immunol, 2020, 205(3):630-636. |
[1] | 雷艳茹, 胡晓玉, 许春红, 张晨曦, 杜文苹, 王阳光, 李东华, 孙桂荣, 李文婷, 康相涛. 5个贵妃鸡配套系生长发育规律、屠宰性能和肉品质比较分析[J]. 畜牧兽医学报, 2024, 55(4): 1521-1535. |
[2] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[3] | 付曦瑶, 陈丽红, 陈小丽, 孙伟丽, 郭肖兰. 11~17周龄雌性雉鸡蛋白质适宜需要量研究[J]. 畜牧兽医学报, 2023, 54(7): 2910-2923. |
[4] | 王明礼, 王猛, 李延森, 徐善金, 韩国锋, 李春梅. 不同粗蛋白水平人工鸽乳对乳鸽生长性能、血清抗氧化水平及肠道发育的影响[J]. 畜牧兽医学报, 2023, 54(4): 1545-1554. |
[5] | 王威皓, 段艳, 王宏迪, 窦露, 刘婷, 康乐天, 孙立娜, 敖特恒格日乐, 靳烨. 饲养方式对苏尼特羊生长性能、屠宰性能、肉品质和瘤胃菌群的影响[J]. 畜牧兽医学报, 2023, 54(3): 1085-1094. |
[6] | 颜琼娴, 陈文勋, 惠浩阳, 彭灿, 汤少勋, 周小玲, 谭支良. 玉米赤霉烯酮对山羊生长性能、胃肠道发酵模式和菌群结构的影响研究[J]. 畜牧兽医学报, 2023, 54(3): 1109-1123. |
[7] | 苏丹, 文晓宾, 马腾, 钟儒清, 王阳, 陈亮. 羟基酪醇对肉仔鸡生长性能、抗氧化能力和肠道炎性因子的影响[J]. 畜牧兽医学报, 2023, 54(11): 4851-4859. |
[8] | 刘攀, 李瑞琦, 谭占坤, 王逸飞, 陈晓晨, 何伟先, 杜忍让, 马健, 褚瑰燕, 蔡传江. 高纤维日粮对生长育肥猪生长性能、肉品质及肠道微生物的影响[J]. 畜牧兽医学报, 2023, 54(10): 4247-4259. |
[9] | 郭艳红, 唐静, 张博, 曹俊婷, 郭占宝, 谢明, 周正奎, 吴永保, 闻治国. 饲粮中代谢能和蛋氨酸水平对育肥期北京鸭生长性能、屠宰性能和血浆生化指标的影响[J]. 畜牧兽医学报, 2023, 54(10): 4278-4288. |
[10] | 常伟辰, 李帅奇, 李琰, 闫微, 张红英, 王彦彬, 杨明凡, 张昂克. 白头翁散煎剂发酵物对感染猪流行性腹泻病毒仔猪肠道屏障功能的影响[J]. 畜牧兽医学报, 2023, 54(10): 4403-4410. |
[11] | 王剑, 陈雪苹, 李继昌. 唾液乳杆菌对鸡毒支原体感染肉鸡生长性能及肺损伤的影响[J]. 畜牧兽医学报, 2022, 53(9): 3172-3179. |
[12] | 郭子涵, 秦春力, 张芳芳, 赵娜, 王彬, 贺稚非, 李洪军, 吕景智. 运输后禁食与非禁食对肉兔应激水平、肉品质和行为的影响[J]. 畜牧兽医学报, 2022, 53(8): 2598-2607. |
[13] | 卢建, 王克华, 杨晓东, 王星果, 李永峰, 马猛, 窦套存, 胡玉萍, 郭军, 李尚民, 曲亮. 育成期饲粮代谢能水平对开产时如皋黄鸡生长发育的影响[J]. 畜牧兽医学报, 2022, 53(7): 2215-2227. |
[14] | 车大璐, 程素彩, 张伟涛, 赵娟娟, 刘爱瑜, 李晓宇, 周英昊, 高玉红, 孙新胜, 李雪梅. 热应激条件下藿朴蒲苓散对育肥羔羊生长性能、消化性能和血清生化指标的影响[J]. 畜牧兽医学报, 2022, 53(6): 1829-1840. |
[15] | 郭大伟, 侯思鲁, 池宇佳, 于非可, 尉啸涵, 邓倩, 肖传明, 刘晓晔, 董虹. 芪英汤和子甘汤中药复方促进母猪繁殖性能和断奶仔猪生长性能的临床研究[J]. 畜牧兽医学报, 2022, 53(6): 1994-2004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||