[1] |
BEYER P, MOORTHY V, PAULIN S, et al.The drugs don't work:WHO's role in advancing new antibiotics[J].Lancet, 2018, 392(10144):264-266.
|
[2] |
ANANTHAKRISHNAN A, PAINTER C, TEERAWATTANANON Y.A protocol for a systematic literature review of economic evaluation studies of interventions to address antimicrobial resistance[J].Syst Rev, 2021, 10(1):242.
|
[3] |
FEYNMAN R P.There's plenty of room at the bottom[J].J Microelectromech Syst, 1992, 1(1):60-66.
|
[4] |
BAYDA S, ADEEL M, TUCCINARDI T, et al.The History of nanoscience and nanotechnology:from chemical-physical applications to nanomedicine[J].Molecules, 2020, 25(1):112.
|
[5] |
EL-SAYED A, KAMEL M.Advanced applications of nanotechnology in veterinary medicine[J].Environ Sci Pollut Res Int, 2020, 27(16):19073-19086.
|
[6] |
YANG Z Y, HE S Q, WU H, et al.Nanostructured antimicrobial peptides:crucial steps of overcoming the bottleneck for clinics[J].Front Microbiol, 2021, 12:710199.
|
[7] |
DÍEZ-PASCUAL A M.State of the art in the antibacterial and antiviral applications of carbon-based polymeric nanocomposites[J].Int J Mol Sci, 2021, 22(19):10511.
|
[8] |
GUO Z C, CHEN Y, WANG Y H, et al.Advances and challenges in metallic nanomaterial synthesis and antibacterial applications[J].J Mater Chem B, 2020, 8(22):4764-4777.
|
[9] |
CHEESEMAN S, CHRISTOFFERSON A J, KARIUKI R, et al.Antimicrobial metal nanomaterials:from passive to stimuli-activated applications[J].Adv Sci, 2020, 7(10):1902913.
|
[10] |
UCAK S, SUDAGIDAN M, BORSA B A, et al.Inhibitory effects of aptamer targeted teicoplanin encapsulated PLGA nanoparticles for Staphylococcus aureus strains[J].World J Microbiol Biotechnol, 2020, 36(5):69.
|
[11] |
OMOLO C A, KALHAPURE R S, AGRAWAL N, et al.A hybrid of mPEG-b-PCL and G1-PEA dendrimer for enhancing delivery of antibiotics[J].J Control Release, 2018, 290:112-128.
|
[12] |
ZHAO Y Y, TIAN Y, CUI Y, et al.Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria[J].J Am Chem Soc, 2010, 132(35):12349-12356.
|
[13] |
GURUNATHAN S, CHOI Y J, KIM J H.Antibacterial efficacy of silver nanoparticles on endometritis caused by Prevotella melaninogenica and Arcanobacterum pyogenes in dairy cattle[J].Int J Mol Sci, 2018, 19(4):1210.
|
[14] |
KAUR K, REDDY S, BARATHE P, et al.Combating drug-resistant bacteria using photothermally active nanomaterials:a perspective review[J].Front Microbiol, 2021, 12:747019.
|
[15] |
WEI X S, GAO Y C, HU Y Q, et al.A light-activated nanotherapeutic with broad-spectrum bacterial recognition to eliminate drug-resistant pathogens[J].J Mater Chem B, 2021, 9(5):1364-1369.
|
[16] |
YANG X Q, XIA P P, ZHANG Y, et al.Photothermal nano-antibiotic for effective treatment of multidrug-resistant bacterial infection[J].ACS Appl Bio Mater, 2020, 3(8):5395-5406.
|
[17] |
WANG Y, YANG Y N, SHI Y R, et al.Antibiotic-free antibacterial strategies enabled by nanomaterials:progress and perspectives[J].Adv Mater, 2020, 32(18):1904106.
|
[18] |
WEI X S, SUN H N, BAI Y Y, et al.An on-demand nanoplatform for enhanced elimination of drug-resistant bacteria[J].Biomater Sci, 2020, 8(24):6912-6919.
|
[19] |
WANG S, XU M, HUANG K W, et al.Biocompatible metal-free organic phosphorescent nanoparticles for efficiently multidrug-resistant bacteria eradication[J].Sci China Mater, 2020, 63(2):316-324.
|
[20] |
GAO F, SHAO T Y, YU Y P, et al.Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action[J].Nat Commun, 2021, 12(1):745.
|
[21] |
YAN L X, WANG B B, ZHAO X, et al.A pH-responsive persistent luminescence nanozyme for selective imaging and killing of Helicobacter pylori and common resistant bacteria[J].ACS Appl Mater Interfaces, 2021, 13(51):60955-60965.
|
[22] |
MAKABENTA J M V, NABAWY A, LI C H, et al.Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections[J].Nat Rev Microbiol, 2021, 19(1):23-36.
|
[23] |
GUO L X, WANG H P, WANG Y X, et al.Organic polymer nanoparticles with primary ammonium salt as potent antibacterial nanomaterials[J].ACS Appl Mater Interfaces, 2020, 12(19):21254-21262.
|
[24] |
WU L N, YANG Y J, HUANG L X, et al.Levofloxacin-based carbon dots to enhance antibacterial activities and combat antibiotic resistance[J].Carbon, 2022, 186:452-464.
|
[25] |
WELDRICK P J, IVESON S, HARDMAN M J, et al.Breathing new life into old antibiotics:overcoming antibacterial resistance by antibiotic-loaded nanogel carriers with cationic surface functionality[J].Nanoscale, 2019, 11(21):10472-10485.
|
[26] |
ELEFTHERIADOU I, GIANNOUSI K, PROTONOTARIOU E, et al.Cocktail of CuO, ZnO, or CuZn nanoparticles and antibiotics for combating multidrug-resistant Pseudomonas aeruginosa via efflux pump inhibition[J].ACS Appl Nano Mater, 2021, 4(9):9799-9810.
|
[27] |
VARELA M F, STEPHEN J, LEKSHMI M, et al.Bacterial resistance to antimicrobial agents[J].Antibiotics (Basel), 2021, 10(5):593.
|
[28] |
AKHLAGHI N, NAJAFPOUR-DARZI G.Multifunctional metal-chelated phosphonate/Fe3O4 magnetic nanocomposite particles for defeating antibiotic-resistant bacteria[J].Powder Technol, 2021, 384:1-8.
|
[29] |
SUN H N, YU Y J, ZHANG Y F, et al.Glycosylated Nanotherapeutics with β-lactamase reversible competitive inhibitory activity reinvigorates antibiotics against gram-negative bacteria[J].Biomacromolecules, 2021, 22(7):2834-2849.
|
[30] |
ZHENG H Z, JI Z X, ROY K R, et al.Engineered graphene oxide nanocomposite capable of preventing the evolution of antimicrobial resistance[J].ACS Nano, 2019, 13(10):11488-11499.
|
[31] |
WANG H B, WANG M J, XU X H, et al.Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance[J].Nat Commun, 2021, 12(1):3331.
|
[32] |
VAISHAMPAYAN A, GROHMANN E.Antimicrobials functioning through ROS-mediated mechanisms:current insights[J].Microorganisms, 2022, 10(1):61.
|
[33] |
DRYDEN M.Reactive oxygen species:a novel antimicrobial[J].Int J Antimicrob Agents, 2018, 51(3):299-303.
|
[34] |
ZHAO Y C, JIA Y X, XU J Y, et al.The antibacterial activities of MoS2 nanosheets towards multi-drug resistant bacteria[J].Chem Commun, 2021, 57(24):2998-3001.
|
[35] |
LI J, WEI X S, HU Y Q, et al.A fluorescent nanobiocide based on ROS generation for eliminating pathogenic and multidrug-resistant bacteria[J].J Mater Chem B, 2021, 9(17):3689-3695.
|
[36] |
HUANG R, CAI G Q, LI J, et al.Correction to:platelet membrane-camouflaged silver metal-organic framework drug system against infections caused by methicillin-resistant Staphylococcus aureus[J].J Nanobiotechnology, 2021, 19(1):278.
|
[37] |
LI X, AHMAD K Z, HE J, et al.Silver nanoflowers coupled with low dose antibiotics enable the highly effective eradication of drug-resistant bacteria[J].J Mater Chem B, 2021, 9(48):9839-9851.
|
[38] |
GALLO G, SCHILLACI D.Bacterial metal nanoparticles to develop new weapons against bacterial biofilms and infections[J].Appl Microbiol Biotechnol, 2021, 105(13):5357-5366.
|
[39] |
SINGH B P, GHOSH S, CHAUHAN A.Development, dynamics and control of antimicrobial-resistant bacterial biofilms:a review[J].Environ Chem Lett, 2021, 19(3):1983-1993.
|
[40] |
ROBERTS A P, MULLANY P.Oral biofilms:a reservoir of transferable, bacterial, antimicrobial resistance[J].Expert Rev Anti Infect Ther, 2010, 8(12):1441-1450.
|
[41] |
LI X Y, CHEN D M, XIE S Y.Current progress and prospects of organic nanoparticles against bacterial biofilm[J].Adv Colloid Interface Sci, 2021, 294:102475.
|
[42] |
MAKABENTA J M V, PARK J, LI C H, et al.Polymeric nanoparticles active against dual-species bacterial biofilms[J].Molecules, 2021, 26(16):4958.
|
[43] |
HE W, WANG Z Y, BAI H T, et al.Highly efficient photothermal nanoparticles for the rapid eradication of bacterial biofilms[J].Nanoscale, 2021, 13(32):13610-13616.
|
[44] |
CREMONINI E, ZONARO E, DONINI M, et al.Biogenic selenium nanoparticles:characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts[J].Microb Biotechnol, 2016, 9(6):758-771.
|