[1] |
CONG L, RAN F A, COX D, et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science, 2013, 339(6121):819-823.
|
[2] |
JINEK M, CHYLINSKI K, FONFARA I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science, 2012, 337(6096):816-821.
|
[3] |
SYMINGTON L S, GAUTIER J.Double-strand break end resection and repair pathway choice[J].Annu Rev Genet, 2011, 45:247-271.
|
[4] |
DEB S, CHOUDHURY A, KHARBYNGAR B, et al.Applications of CRISPR/Cas9 technology for modification of the plant genome[J].Genetica, 2022, 150(1):1-12.
|
[5] |
LI G L, LI X Y, ZHUANG S K, et al.Gene editing and its applications in biomedicine[J].Sci China Life Sci, 2022, 65(4):660-700.
|
[6] |
PERISSE I V, FAN Z Q, SINGINA G N, et al.Improvements in gene editing technology boost its applications in livestock[J].Front Genet, 2021, 11:614688.
|
[7] |
KOMOR A C, KIM Y B, PACKER M S, et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature, 2016, 533(7603):420-424.
|
[8] |
GAUDELLI N M, KOMOR A C, REES H A, et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J].Nature, 2017, 551(7681):464-471.
|
[9] |
JIN S, ZONG Y, GAO Q, et al.Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J].Science, 2019, 364(6437):292-295.
|
[10] |
ZUO E W, SUN Y D, WEI W, et al.Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J].Science, 2019, 364(6437):289-292.
|
[11] |
ANZALONE A V, RANDOLPH P B, DAVIS J R, et al.Search-and-replace genome editing without double-strand breaks or donor DNA[J].Nature, 2019, 576(7785):149-157.
|
[12] |
CHEN P J, HUSSMANN J A, YAN J, et al.Enhanced prime editing systems by manipulating cellular determinants of editing outcomes[J].Cell, 2021, 184(22):5635-5652.e29.
|
[13] |
DA SILVA J F, OLIVEIRA G P, ARASA-VERGE E A, et al.Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair[J].Nat Commun, 2022, 13(1):760.
|
[14] |
JIANG T T, ZHANG X O, WENG Z P, et al.Deletion and replacement of long genomic sequences using prime editing[J].Nat Biotechnol, 2022, 40(2):227-234.
|
[15] |
CHOI J, CHEN W, SUITER C C, et al.Precise genomic deletions using paired prime editing[J].Nat Biotechnol, 2022, 40(2):218-226.
|
[16] |
ANZALONE A V, GAO X D, PODRACKY C J, et al.Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing[J].Nat Biotechnol, 2022, 40(5):731-740.
|
[17] |
WANG J L, HE Z, WANG G Q, et al.Efficient targeted insertion of large DNA fragments without DNA donors[J].Nat Methods, 2022, 19(3):331-340.
|
[18] |
LIU P P, LIANG S Q, ZHENG C W, et al.Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice[J].Nat Commun, 2021, 12(1):2121.
|
[19] |
XU W, ZHANG C W, YANG Y X, et al.Versatile nucleotides substitution in plant using an improved prime editing system[J].Mol Plant, 2020, 13(5):675-678.
|
[20] |
XU W, YANG Y X, YANG B Y, et al.A design optimized prime editor with expanded scope and capability in plants[J].Nat Plants, 2022, 8(1):45-52.
|
[21] |
LU Y M, TIAN Y F, SHEN R D, et al.Precise genome modification in tomato using an improved prime editing system[J].Plant Biotechnol J, 2021, 19(3):415-417.
|
[22] |
LI X Y, WANG X, SUN W J, et al.Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes[J].J Mol Cell Biol, 2022, 14(4):mjac022.
|
[23] |
ZHANG G Q, LIU Y, HUANG S S, et al.Enhancement of prime editing via xrRNA motif-joined pegRNA[J].Nat Commun, 2022, 13(1):1856.
|
[24] |
NELSON J W, RANDOLPH P B, SHEN S P, et al.Engineered pegRNAs improve prime editing efficiency[J].Nat Biotechnol, 2022, 40(3):402-410.
|
[25] |
LI X S, ZHOU L N, GAO B Q, et al.Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure[J].Nat Commun, 2022, 13(1):1669.
|
[26] |
LIN Q P, JIN S, ZONG Y, et al.High-efficiency prime editing with optimized, paired pegRNAs in plants[J].Nat Biotechnol, 2021, 39(8):923-927.
|
[27] |
WOLFF J H, HALDRUP J, THOMSEN E A, et al.piggyPrime:high-efficacy prime editing in human cells using piggyBac-based DNA transposition[J].Front Genome Ed, 2021, 3:786893.
|
[28] |
EGGENSCHWILER R, GSCHWENDTBERGER T, FELSKI C, et al.A selectable all-in-one CRISPR prime editing piggyBac transposon allows for highly efficient gene editing in human cell lines[J].Sci Rep, 2021, 11(1):22154.
|
[29] |
WANG Q, LIU J, JANSSEN J M, et al.Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery[J].Nucleic Acids Res, 2021, 49(20):11986-12001.
|
[30] |
ADIKUSUMA F, LUSHINGTON C, ARUDKUMAR J, et al.Optimized nickase- and nuclease-based prime editing in human and mouse cells[J].Nucleic Acids Res, 2021, 49(18):10785-10795.
|
[31] |
LIU B, DONG X L, CHENG H Y, et al.A split prime editor with untethered reverse transcriptase and circular RNA template[J].Nat Biotechnol, 2022, doi:10.1038/s41587-022-01255-9.
|
[32] |
XU R F, LI J, LIU X S, et al.Development of plant prime-editing systems for precise genome editing[J].Plant Commun, 2020, 1(3):100043.
|
[33] |
SIMON D A, TÁLAS A, KULCSÁR P I, et al.PEAR, a flexible fluorescent reporter for the identification and enrichment of successfully prime edited cells[J].Elife, 2022, 11:e69504.
|
[34] |
SCHENE I F, JOORE I P, BAIJENS J H L, et al.Mutation-specific reporter for optimization and enrichment of prime editing[J].Nat Commun, 2022, 13(1):1028.
|
[35] |
SVRVN D, SCHNEIDER A, MIRCETIC J, et al.Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors[J].Genes (Basel), 2020, 11(5):511.
|
[36] |
SCHENE I F, JOORE I P, OKA R, et al.Prime editing for functional repair in patient-derived disease models[J].Nat Commun, 2020, 11(1):5352.
|
[37] |
GEURTS M H, DE POEL E, PLEGUEZUELOS-MANZANO C, et al.Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids[J].Life Sci Alliance, 2021, 4(10):e202000940.
|
[38] |
LIU Y, LI X Y, HE S T, et al.Efficient generation of mouse models with the prime editing system[J].Cell Discov, 2020, 6(1):27.
|
[39] |
GAO P, LYU Q, GHANAM A R, et al.Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression[J].Genome Biol, 2021, 22(1):83.
|
[40] |
PETRI K, ZHANG W T, MA J Y et al.CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells[J].Nat Biotechnol, 2022, 40(2):189-193.
|
[41] |
BOSCH J A, BIRCHAK G, PERRIMON N.Precise genome engineering in Drosophila using prime editing[J].Proc Natl Acad Sci U S A, 2021, 118(1):e2021996118.
|
[42] |
LIN Q P, ZONG Y, XUE C X, et al.Prime genome editing in rice and wheat[J].Nat Biotechnol, 2020, 38(5):582-585.
|
[43] |
TANG X, SRETENOVIC S, REN Q R, et al.Plant prime editors enable precise gene editing in rice cells[J].Mol Plant, 2020, 13(5):667-670.
|
[44] |
LI H Y, LI J Y, CHEN J L, et al.Precise modifications of both exogenous and endogenous genes in rice by prime editing[J].Mol Plant, 2020, 13(5):671-674.
|
[45] |
BUTT H, RAO G S, SEDEEK K, et al.Engineering herbicide resistance via prime editing in rice[J].Plant Biotechnol J, 2020, 18(12):2370-2372.
|
[46] |
HUA K, JIANG Y W, TAO X P, et al.Precision genome engineering in rice using prime editing system[J].Plant Biotechnol J, 2020, 18(11):2167-2169.
|
[47] |
JIANG Y Y, CHAI Y P, LU M H, et al.Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize[J].Genome Biol, 2020, 21(1):257.
|
[48] |
PERROUD P F, GUYON-DEBAST A, VEILLET F, et al.Prime Editing in the model plant Physcomitrium patens and its potential in the tetraploid potato[J].Plant Sci, 2022, 316:111162.
|
[49] |
WANG L, KAYA H B, ZHANG N, et al.Spelling changes and fluorescent tagging with prime editing vectors for plants[J].Front Genome Ed, 2021, 3:617553.
|
[50] |
BHAGWAT A M, GRAUMANN J, WIEGANDT R, et al.multicrispr:gRNA design for prime editing and parallel targeting of thousands of targets[J].Life Sci Alliance, 2020, 3(11):e202000757.
|
[51] |
HSU J Y, GRVNEWALD J, SZALAY R, et al.PrimeDesign software for rapid and simplified design of prime editing guide RNAs[J].Nat Commun, 2021, 12(1):1034.
|
[52] |
CHOW R D, CHEN J S, SHEN J, et al.A web tool for the design of prime-editing guide RNAs[J].Nat Biomed Eng, 2021, 5(2):190-194.
|
[53] |
MORRIS J A, RAHMAN J A, GUO X Y, et al.Automated design of CRISPR prime editors for 56, 000 human pathogenic variants[J].iScience, 2021, 24(11):103380.
|
[54] |
HWANG G H, JEONG Y K, HABIB O, et al.PE-Designer and PE-Analyzer:web-based design and analysis tools for CRISPR prime editing[J].Nucleic Acids Res, 2021, 49(W1):W499-W504.
|
[55] |
JIN S, LIN Q P, LUO Y F, et al.Genome-wide specificity of prime editors in plants[J].Nat Biotechnol, 2021, 39(10):1292-1299.
|
[56] |
KIM D Y, MOON S B, KO J H, et al.Unbiased investigation of specificities of prime editing systems in human cells[J].Nucleic Acids Res, 2020, 48(18):10576-10589.
|