畜牧兽医学报 ›› 2020, Vol. 51 ›› Issue (4): 649-659.doi: 10.11843/j.issn.0366-6964.2020.04.001
徐小丽1,2, 曹家雪1,2*
收稿日期:
2019-11-01
出版日期:
2020-04-25
发布日期:
2020-04-21
通讯作者:
曹家雪,主要从事羊遗传育种研究,E-mail:jiaxuecao@sicau.edu.cn
作者简介:
徐小丽(1995-),女,四川泸州人,硕士生,主要从事山羊遗传育种研究,E-mail:xxl18428396995@163.com
基金资助:
XU Xiaoli1,2, CAO Jiaxue1,2*
Received:
2019-11-01
Online:
2020-04-25
Published:
2020-04-21
摘要: CRISPR/Cas9系统是一种广泛存在于细菌和古菌中的免疫机制。近年来,已发展为一种快捷高效的基因编辑工具,用于研究编码或非编码RNA的功能。非编码RNA是一类不编码蛋白质的RNA,其可通过多种调控途径在动物的生长发育、疾病免疫等生理或病理过程中发挥重要的生物学功能。CRISPR/Cas9技术可以靶向核酸序列稳定敲除基因,得到敲除小鼠或细胞系,虽然其在非编码RNA功能研究中的使用干扰了邻近基因或宿主基因表达,但该技术的出现为非编码RNA功能机制的探索提供了不同的途径。本文通过简要概述CRISPR/Cas系统的发展和作用原理,并重点介绍CRISPR/Cas9技术在动物miRNA、lncRNA及circRNA功能研究中的应用,以期为相关研究提供参考。
中图分类号:
徐小丽, 曹家雪. CRISPR/Cas9技术在动物非编码RNA功能研究中的应用[J]. 畜牧兽医学报, 2020, 51(4): 649-659.
XU Xiaoli, CAO Jiaxue. Application of CRISPR/Cas9 Technology in the Study of Animal Non-coding RNA Function[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(4): 649-659.
[1] | GARNEAU J E,DUPUIS M ō,VILLION M, et al.The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J].Nature,2010,468(7320):67-71. |
[2] | LIU J Q,ZHOU Y Z,QI X L,et al.CRISPR/Cas9 in zebrafish:an efficient combination for human genetic diseases modeling[J]. Hum Genet,2017,136(1):1-12. |
[3] | CAPELLINI T D,CHEN H,CAO J X,et al.Ancient selection for derived alleles at a GDF5 enhancer influencing human growth and osteoarthritis risk[J].Nat Genet,2017,49(8):1202-1210. |
[4] | WU M M,WEI C H,LIAN Z X,et al.Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system[J].Sci Rep,2016,6:24360. |
[5] | CONG L,RAN F A,COX D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823. |
[6] | ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987, 169(12):5429-5433. |
[7] | JANSEN R, EMBDEN J D, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol, 2002, 43(6):1565-1575. |
[8] | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. |
[9] | ABUDAYYEH O O, GOOTENBERG J S, ESSLETZBICHLER P, et al. RNA targeting with CRISPR-Cas13[J]. Nature, 2017, 550(7675):280-284. |
[10] | HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416):839-842. |
[11] | DOLAN A E, HOU Z, XIAO Y, et al. Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas[J]. Mol Cell, 2019, 74(5):936-950. |
[12] | KOONIN E V,MAKAROVA K S,ZHANG F.Diversity,classification and evolution of CRISPR-Cas systems[J].Curr Opin Microbiol, 2017,37:67-78. |
[13] | YOU L L,MA J,WANG J Y,et al.Structure studies of the CRISPR-Csm complex reveal mechanism of co-transcriptional interference[J].Cell,2019,176(1-2):239-253.e16. |
[14] | DOLAN A E,HOU Z G,XIAO Y B,et al.Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas[J].Mol Cell,2019,74(5):936-950.e5. |
[15] | JIANG F G,DOUDNA J A.CRISPR-Cas9 structures and mechanisms[J].Annu Rev Biophys,2017,46:505-529. |
[16] | HU J H,MILLER S M,GEURTS M H,et al.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J].Nature,2018,556(7699):57-63. |
[17] | GRAF R,LI X,CHU V T,et al.sgRNA sequence motifs blocking efficient CRISPR/Cas9-mediated gene editing[J].Cell Rep,2019, 26(5):1098-1103.e3. |
[18] | FU Y F,SANDER J D,REYON D,et al.Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J].Nat Biotechnol,2014,32(3):279-284. |
[19] | ZHANG J P,LI X L,NEISES A,et al.Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency[J].Sci Rep, 2016,6:28566. |
[20] | KOCAK D D,JOSEPHS E A,BHANDARKAR V,et al.Increasing the specificity of CRISPR systems with engineered RNA secondary structures[J].Nat Biotechnol,2019,37(6):657-666. |
[21] | LIU L,YIN M L,WANG M,et al.Phage AcrIIA2 DNA mimicry:structural basis of the CRISPR and Anti-CRISPR arms race[J]. Mol Cell,2019,73(3):611-620.e3. |
[22] | MAJI B,GANGOPADHYAY S A,LEE M,et al.A high-throughput platform to identify small-molecule inhibitors of CRISPR-Cas9[J]. Cell,2019,177(4):1067-1079.e19. |
[23] | BOETTCHER M,MCMANUS M T.Choosing the right tool for the job:RNAi,TALEN,or CRISPR[J].Mol Cell,2015, 58(4):575-585. |
[24] | GOYAL A,MYACHEVA K,GROß M,et al.Challenges of CRISPR/Cas9 applications for long non-coding RNA genes[J].Nucleic Acids Res,2017,45(3):e12. |
[25] | ZHANG L,SALGADO-SOMOZA A,VAUSORT M,et al.A heart-enriched antisense long non-coding RNA regulates the balance between cardiac and skeletal muscle triadin[J].Biochim Biophys Acta Mol Cell Res,2018,1865(2):247-258. |
[26] | ROSENBLUH J,XU H,HARRINGTON W,et al.Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression[J].Nat Commun,2017,8:15403. |
[27] | INOUE K,HIROSE M,INOUE H,et al.The rodent-specific microRNA cluster within the Sfmbt2 gene is imprinted and essential for placental development[J].Cell Rep,2017,19(5):949-956. |
[28] | ONODERA Y,TERAMURA T,TAKEHARA T,et al.Inflammation-associated miR-155 activates differentiation of muscular satellite cells[J].PLoS One,2018,13(10):e0204860. |
[29] | GAY S,BUGEON J,BOUCHAREB A,et al.MiR-202 controls female fecundity by regulating medaka oogenesis[J].PLoS Genet, 2018, 14(9):e1007593. |
[30] | LI L L,ZHU Y L,CHEN T,et al.MiR-125b-2 knockout in testis is associated with targeting to the PAP gene,mitochondrial copy number,and impaired sperm quality[J].Int J Mol Sci,2019,20(1):148. |
[31] | CUI Q,XING J H,YU M,et al.Mmu-miR-185 depletion promotes osteogenic differentiation and suppresses bone loss in osteoporosis through the Bgn-mediated BMP/Smad pathway[J].Cell Death Dis,2019,10(3):172. |
[32] | ZHAO Y C,DAI Z,LIANG Y,et al.Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system[J].Sci Rep,2014, 4:3943. |
[33] | LI M H,LIU X Y,DAI S F,et al.High efficiency targeting of non-coding sequences using CRISPR/Cas9 system in tilapia[J].G3(Bethesda),2019,9(1):287-295. |
[34] | JIANG Q,MENG X,MENG L W,et al.Small indels induced by CRISPR/Cas9 in the 5'region of microRNA lead to its depletion and Drosha processing retardance[J].RNA Biol,2014,11(10):1243-1249. |
[35] | YAN Y,QIN D,HU B,et al.Deletion of miR-126a promotes hepatic aging and inflammation in a mouse model of cholestasis[J]. Mol Ther Nucleic Acids,2019,16:494-504. |
[36] | 李龙龙,朱燕玲,曾斌,等.基于转录组学筛选miR-125b-2敲除小鼠睾丸发育相关基因及信号通路的研究[J].畜牧兽医学报, 2019,50(10):2022-2031.LI L L,ZHU Y L,ZENG B,et al.Screening of genes and signaling pathway related to testicular development in miR-125b-2 knockout mouse based on transcriptomics[J].Acta Veterinaria et Zootechnica Sinica,2019,50(10):2022-2031.(in Chinese) |
[37] | GHINI F,RUBOLINO C,CLIMENT M,et al.Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation[J].Nat Commun,2018,9:3119. |
[38] | WANG X W,HU L F,HAO J,et al.A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool[J].Nat Cell Biol,2019,21(4):522-530. |
[39] | HOFFMANN M D,ASCHENBRENNER S,GROSSE S,et al.Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins[J].Nucleic Acids Res,2019,47(13):e75. |
[40] | ZHOU S,LI S,ZHANG W W,et al.MiR-139 promotes differentiation of bovine skeletal muscle-derived satellite cells by regulating DHFR gene expression[J].J Cell Physiol,2019,234(1):632-641. |
[41] | ZHANG W W,TONG H L,SUN X F,et al.Identification of miR-2400 gene as a novel regulator in skeletal muscle satellite cells proliferation by targeting MYOG gene[J].Biochem Biophys Res Commun,2015,463(4):624-631. |
[42] | LIN Y,WU J H,GU W H,et al.Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs[J].Adv Sci (Weinh), 2018,5(4):1700611. |
[43] | LI Z L,ZHOU X Y,WEI M Y,et al.In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9[J].Nano Lett,2019,19(1):19-28. |
[44] | YIN Y F,YAN P X,LU J L,et al.Opposing roles for the lncRNA Haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation[J].Cell Stem Cell,2015,16(5):504-516. |
[45] | LUO S,LU J Y,LIU L C,et al.Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells[J].Cell Stem Cell,2016,18(5):637-652. |
[46] | HOSONO Y,NIKNAFS Y S,PRENSNER J R,et al.Oncogenic role of THOR,a conserved cancer/testis long non-coding RNA[J].Cell,2017,171(7):1559-1572.e20. |
[47] | WICHMAN L,SOMASUNDARAM S,BREINDEL C,et al.Dynamic expression of long noncoding RNAs reveals their potential roles in spermatogenesis and fertility[J].Biol Reprod,2017,97(2):313-323. |
[48] | YANG D D,QIAO J,WANG G Y,et al.N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential[J].Nucleic Acids Res,2018,46(8):3906-3920. |
[49] | CHOWDHURY T A,KOCEJA C,EISA-BEYGI S,et al.Temporal and spatial post-transcriptional regulation of zebrafish tie1 mRNA by long noncoding RNA during brain vascular assembly[J].Arterioscler Throm B vasc Biol,2018,38(7):1562-1575. |
[50] | WANG H,WANG X X,LI X R,et al.A novel long non-coding RNA regulates the immune response in MAC-T cells and contributes to bovine mastitis[J].FEBS J,2019,286(9):1780-1795. |
[51] | STAFFORD D A,DICHMANN D S,CHANG J K,et al.Deletion of the sclerotome-enriched lncRNA PEAT augments ribosomal protein expression[J].Proc NatI Acad Sci U S A,2017,114(1):101-106. |
[52] | BALLARINO M,CIPRIANO A,TITA R,et al.Deficiency in the nuclear long noncoding RNA Charme causes myogenic defects and heart remodeling in mice[J].EMBO J,2018,37(18):e99697. |
[53] | 田净净,刘洋洋,杨哲,等.利用CRISPR/Cas9系统高效敲除斑马鱼lncRNA基因启动子区[J].农业生物技术学报, 2016,24(5):649-656.TIAN J J,LIU Y Y,YANG Z,et al.Efficient knockout of lncRNA promoter region by CRISPR/Cas9 System in zebrafish (Danio rerio)[J].Journal of Agricultural Biotechnology,2016,24(5):649-656.(in Chinese) |
[54] | APARICIO-PRAT E,ARNAN C,SALA I,et al.DECKO:single-oligo,dual-CRISPR deletion of genomic elements including long non-coding RNAs[J].BMC Genomics,2015,16:846. |
[55] | YAMAZAKI T,FUJIKAWA C,KUBOTA A,et al.CRISPRa-mediated NEAT1 lncRNA upregulation induces formation of intact paraspeckles[J].Biochem Biophys Res Commun,2018,504(1):218-224. |
[56] | SHECHNER D M,HACISULEYMAN E,YOUNGER S T,et al.Multiplexable,locus-specific targeting of long RNAs with CRISPR-Display[J].Nat Methods,2015,12(7):664-670. |
[57] | STOJIC L,LUN A T L,MANGEI J,et al.Specificity of RNAi,LNA and CRISPRi as loss-of-function methods in transcriptional analysis[J].Nucleic Acids Res,2018,46(12):5950-5966. |
[58] | PIWECKA M,GLAŽAR P,HERNANDEZ-MIRANDA L R,et al.Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function[J].Science,2017,357(6357):eaam8526. |
[59] | KLEAVELAND B,SHI C Y,STEFANO J,et al.A network of noncoding regulatory RNAs acts in the mammalian brain[J].Cell, 2018,174(2):350-362.e17. |
[60] | ZHENG Q P,BAO C Y,GUO W J,et al.Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J].Nat Commun,2016,7:11215. |
[61] | XIA P Y,WANG S,YE B Q,et al.A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion[J].Immunity,2018,48(4):688-701.e7. |
[62] | GUPTA S K,GARG A,BAR C,et al.Quaking inhibits doxorubicin-mediated cardiotoxicity through regulation of cardiac circular RNA expression[J].Circ Res,2018,122(2):246-254. |
[63] | FEI T,CHEN Y W,XIAO T F,et al.Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing[J].Proc NatI Acad Sci U S A,2017,114(26):E5207-E5215. |
[64] | LEGNINI I,DI TIMOTEO G,ROSSI F,et al.Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J]. Mol Cell,2017,66(1):22-37.e9. |
[65] | ZHANG M L,ZHAO K,XU X P,et al.A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma[J].Nat Commun,2018,9(1):4475. |
[1] | 张元旭, 李竟, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 动物遗传评估软件研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1827-1841. |
[2] | 张为, 潘志豪, 方富贵. 表观遗传学调控雌性动物初情期启动的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1875-1882. |
[3] | 张吉贤, 范定坤, 付域泽, 焦帅, 马涛, 毕研亮, 张乃锋. 后生素调控动物肠道健康的作用机制及应用进展[J]. 畜牧兽医学报, 2024, 55(5): 1926-1935. |
[4] | 邓梏男, 张家祺, 保志鹏, 陈涛云, 喻琦胜, 丁露, 朱晨曦, 王怡, 任玉鹏, 贺超, 张斌. 猫疱疹病毒1型的检测及一株分离毒株的致病性[J]. 畜牧兽医学报, 2024, 55(5): 2253-2258. |
[5] | 刘思弟, 马贲, 郑言, 邱云桥, 姚泽龙, 曹中赞, 栾新红. 肠道菌群调控动物肠道黏膜免疫和炎症的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1423-1431. |
[6] | 李菲菲, 张晨淼, 童津津, 蒋林树. 线粒体自噬调节NLRP3炎症小体活性改善动物健康的作用机制[J]. 畜牧兽医学报, 2024, 55(4): 1446-1455. |
[7] | 刘伟烨, 黄雪伟. 非编码RNA在传染性法氏囊病病毒感染中的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1488-1498. |
[8] | 张艳敏, 赵东旭, 王文龙. 捻转血矛线虫对伊维菌素的耐药机制[J]. 畜牧兽医学报, 2024, 55(4): 1511-1520. |
[9] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[10] | 罗承慧, 高江瑞, 陈俊威, 魏春洁, 韦双双, 裴业春. 尘螨诱导特应性皮炎小鼠模型和哮喘小鼠模型的构建[J]. 畜牧兽医学报, 2024, 55(3): 1257-1267. |
[11] | 武文英, 夏青, 胡萌婕, 赵逸轩, 王琛, 张宇豪, 郝成武, 贺笋, 郭爱珍, 陈建国, 陈颖钰. 牛支原体兔体攻毒模型的建立[J]. 畜牧兽医学报, 2024, 55(3): 1268-1277. |
[12] | 王娜娜, 李颀菡, 马媛, 金昊延, 胡亚美, 马云, 张令锴. TLR7和TLR8在家畜性控技术中的研究进展[J]. 畜牧兽医学报, 2024, 55(2): 427-437. |
[13] | 毕振威, 王文杰, 刘雅坤, 彭大新. 新的犬ANP32A的克隆及其在流感病毒跨物种感染中的作用[J]. 畜牧兽医学报, 2024, 55(2): 660-669. |
[14] | 范定坤, 张吉贤, 付域泽, 马涛, 毕研亮, 张乃锋. 反刍动物瘤胃微生物培养组学研究进展[J]. 畜牧兽医学报, 2024, 55(1): 51-58. |
[15] | 张德安, 杨若渚, 刘杰, 刘德武, 邓铭, 柳广斌, 孙宝丽, 郭勇庆, 李耀坤. 饲喂青贮黄梁木代替青贮玉米川中黑山羊肝转录组的表达分析[J]. 畜牧兽医学报, 2024, 55(1): 232-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||