

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (9): 4491-4506.doi: 10.11843/j.issn.0366-6964.2025.09.029
夏春秋(
), 苗舒, 李志青, 刘磊, 万发春*(
), 沈维军*(
)
收稿日期:2024-10-24
出版日期:2025-09-23
发布日期:2025-09-30
通讯作者:
万发春,沈维军
E-mail:xiachunqiu2022@163.com;wanfc@sina.com;shenweijun@hunan.edu.cn
作者简介:夏春秋(1999-),女,江苏沭阳人,硕士生,主要从事动物营养与饲料科学研究,E-mail: xiachunqiu2022@163.com
基金资助:
XIA Chunqiu(
), MIAO Shu, LI Zhiqing, LIU Lei, WAN Fachun*(
), SHEN Weijun*(
)
Received:2024-10-24
Online:2025-09-23
Published:2025-09-30
Contact:
WAN Fachun, SHEN Weijun
E-mail:xiachunqiu2022@163.com;wanfc@sina.com;shenweijun@hunan.edu.cn
摘要:
旨在探究缬氨酸(Val)对牛成肌细胞增殖的影响及潜在的分子调控机制。采用单因素试验设计,通过CCK-8和EdU检测不同浓度Val对细胞增殖的影响并确定其最佳作用浓度;使用分子对接方法预测Val分别与AMPK和mTOR蛋白之间的相互作用;将细胞分为6组:对照组(0 mmol·L-1 Val)、0.5 mmol·L-1 Val组(0.5 mmol·L-1 Val)、Val+AMPK激活剂AICAR组(0.5 mmol·L-1 Val+1 mmol·L-1 AICAR)、Val+AMPK抑制剂Compound C组(0.5 mmol·L-1 Val+5 μmol·L-1 Compound C)、AMPK激活剂AICAR组(1 mmol·L-1 AICAR)和AMPK抑制剂Compound C组(5 μmol·L-1 Compound C)。试验采用qRT-PCR和Western blot技术检测Val对牛成肌细胞中增殖相关因子PAX7、PCNA和CDK1以及AMPK/mTOR信号通路关键因子AMPK和mTOR的mRNA和蛋白表达影响。结果表明:与对照组相比,0.5 mmol·L-1 Val作用牛成肌细胞24 h后细胞活力极显著提高(P < 0.001),EdU阳性细胞率极显著上升(P < 0.01),PAX7和PCNA的mRNA表达水平(P < 0.05)、PAX7的蛋白表达水平均显著升高(P < 0.05)。分子对接预测结果显示,Val与AMPK之间由2个氢键连接,Val与mTOR之间可形成3个氢键,氢键的作用使Val与AMPK和mTOR之间的结合更加稳定。与对照组相比,0.5 mmol·L-1 Val单独作用于牛成肌细胞后mTOR的蛋白表达水平显著升高(P < 0.05),AMPK的蛋白表达水平显著降低(P < 0.05)。与0.5 mmol·L-1 Val组相比,0.5 mmol·L-1 Val+1 mmol·L-1 AICAR组mTOR的mRNA表达水平、mTOR和PAX7的蛋白表达水平均极显著降低(P < 0.01),AMPK的mRNA和蛋白表达水平均显著升高(P < 0.05);0.5 mmol·L-1 Val+5 μmol·L-1 Compound C组mTOR的mRNA表达水平显著升高(P < 0.05)。本研究表明,Val可通过负调控AMPK/mTOR信号通路促进牛成肌细胞增殖,揭示了Val通过AMPK/mTOR信号通路影响牛成肌细胞增殖的分子机理。
中图分类号:
夏春秋, 苗舒, 李志青, 刘磊, 万发春, 沈维军. 缬氨酸通过AMPK/mTOR信号通路调控牛成肌细胞增殖[J]. 畜牧兽医学报, 2025, 56(9): 4491-4506.
XIA Chunqiu, MIAO Shu, LI Zhiqing, LIU Lei, WAN Fachun, SHEN Weijun. Valine Regulates Bovine Myoblast Proliferation through the AMPK/mTOR Signaling Pathway[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4491-4506.
表 1
qRT-PCR引物信息序列"
| 基因 Gene | 引物序列(5′→ 3′) Primer sequence | 产物长度/bp Length |
| 配对盒7 Paired box 7(PAX7) | F:AGCCGAGTGCTCAGAATCAA R:TCCAGACGGTTCCCTTTGTC | 131 |
| 细胞周期蛋白依赖性激酶 Cyclin-dependent kinase 1(CDK1) | F:CGGATAAAGCCGGGGTCTAC R:TGGCTACCACTTGGCCTGTA | 132 |
| 增殖细胞核抗原 Proliferating cell nuclear antigen(PCNA) | F:TGCAGATGTACCCCTTGTTGT R:CATCCTCGATCTTGGGAGCC | 83 |
| 哺乳动物雷帕霉素靶蛋白 Mammalian target of Rapamycin(mTOR) | F:GCTGCATGGGGTTTAGGTCA R:GATGCACTGTTGTGCCAAGG | 138 |
| AMP依赖的蛋白激酶 Adenosine 5’-monophosphate (AMP)-activated protein kinase(AMPK) | F:TCGGCAAAGTGAAGATTGGAGA R:TCCAACAACATCTAAACTGCGA | 98 |
| 甘油醛-3-磷酸脱氢酶 Glyceraldehyde-3-phosphate dehydrogenase(GAPDH) | F:AGGTCGGAGTGAACGGATTC R:ATGGCGACGATGTCCACTTT | 85 |
| 1 | 曹兵海, 曹建民, 李俊雅, 等. 2023年度肉牛牦牛产业与技术发展报告[J]. 中国畜牧杂志, 2024, 60 (3): 335- 338. |
| CAO B H , CAO J M , LI J Y , et al. 2023 Annual report on the development of the beef cattle and yak industry and technology[J]. China Journal of Animal Husbandry, 2024, 60 (3): 335- 338. | |
| 2 | 其达拉图. 有关肉牛养殖和管理[J]. 吉林畜牧兽医, 2020, 41 (2): 88- 89. |
| QI D L T . Regarding beef cattle breeding and management[J]. Jilin Animal Husbandry and Veterinary Medicine, 2020, 41 (2): 88- 89. | |
| 3 | 赵畅. 牛肉进口对我国牛肉市场的影响研究[D]. 保定: 河北农业大学, 2023. |
| ZHAO C. Research on the impact of beef import on china 's beef market[D]. Baoding: Hebei Agricultural University, 2023. (in Chinese) | |
| 4 | SPENCER R J , KETEL C R , PENNER G B , et al. Association of a variant upstream of growth differentiation factor 11 (GDF11) on carcass traits in crossbred beef cattle[J]. Transl Anim Sci, 2023, 7 (1) |
| 5 | ZHANG Z , HE Z , PANG W . The role and regulatory mechanism of tissue and organ crosstalk on skeletal muscle development: a review[J]. Chin J Biotechnol, 2023, 39 (4): 1502- 1513. |
| 6 |
OKSBJERG N , GONDRET F , VESTERGAARD M . Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system[J]. Domest Anim Endocrinol, 2004, 27 (3): 219- 240.
doi: 10.1016/j.domaniend.2004.06.007 |
| 7 | HERNÁNDEZ-HERNÁNDEZ J M, GARCÍA-GONZÁLEZ E G, BRUN C E, et al. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration[C]. Semin Cell Dev Biol, 2017, 72: 10-18. |
| 8 |
BRAUN T , GAUTEL M . Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis[J]. Nat Rev Mol Cell Biol, 2011, 12 (6): 349- 361.
doi: 10.1038/nrm3118 |
| 9 |
ZHANG D , ZHANG X , LIU Z , et al. Diosmin promotes myogenesis via activating the Akt/FOXO1 pathway to facilitate the proliferation of C2C12 myoblasts[J]. J Agric Food Chem, 2023, 71 (49): 19705- 19716.
doi: 10.1021/acs.jafc.3c04828 |
| 10 |
GUAN L , CAO Z , PAN Z , et al. Butyrate promotes C2C12 myoblast proliferation by activating ERK/MAPK pathway[J]. Mol Omics, 2023, 19 (7): 552- 559.
doi: 10.1039/D2MO00256F |
| 11 |
LIU S , LIU Z , WANG P , et al. Estrogen-mediated oar-miR-485-5p targets PPP1R13B to regulate myoblast proliferation in sheep[J]. Int J Biol Macromol, 2023, 236, 123987.
doi: 10.1016/j.ijbiomac.2023.123987 |
| 12 |
WANG Z , CAI D , LI K , et al. Transcriptome analysis of the inhibitory effect of cycloleucine on myogenesis[J]. Poult Sci, 2022, 101 (12): 102219.
doi: 10.1016/j.psj.2022.102219 |
| 13 | AOYAMA S , KIM H K , HIROOKA R , et al. Distribution of dietary protein intake in daily meals influences skeletal muscle hypertrophy via the muscle clock[J]. Cell Rep, 2021, 36 (1) |
| 14 | KASPY M S , HANNAIAN S J , BELL Z W , et al. The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: an update[J]. Nutr Res Rev, 2023, 1- 36. |
| 15 | 黄璇, 蒋桂韬, 李闯, 等. 饲粮支链氨基酸比例对攸县麻鸭生长性能、血清生化指标和肠道发育的影响[J]. 动物营养学报, 2022, 34 (9): 5759- 5766. |
| HUANG X , JIANG G T , LI C , et al. Effects of dietary branched-chain amino acid ratio on growth performance, serum biochemical indexes and intestinal development of youxian duck[J]. Journal of Animal Nutrition, 2022, 34 (9): 5759- 5766. | |
| 16 | 董贤文. 提高蛋氨酸和支链氨基酸对奶牛乳腺上皮细胞酪蛋白合成调控通路的影响[D]. 成都: 四川农业大学, 2017. |
| DONG X W. Effect of methionine and branched-chain amino acids on the regulation pathway of casein synthesis in dairy cow mammary epithelial cells[D]. Chengdu: Sichuan Agricultural University, 2017. (in Chinese) | |
| 17 |
CORZO A , KIDD M T , DOZIER Ⅲ W A , et al. Marginality and needs of dietary valine for broilers fed certain all-vegetable diets[J]. J Appl Poult Res, 2007, 16 (4): 546- 554.
doi: 10.3382/japr.2007-00025 |
| 18 |
SARTORI T , SANTOS A C A , DASILVA R O , et al. Branched chain amino acids improve mesenchymal stem cell proliferation, reducing nuclear factor kappa B expression and modulating some inflammatory properties[J]. J Nutr, 2020, 78, 110935.
doi: 10.1016/j.nut.2020.110935 |
| 19 |
JIAN H , XU Q , WANG X , et al. Amino acid and fatty acid metabolism disorders trigger oxidative stress and inflammatory response in excessive dietary valine-induced NAFLD of laying hens[J]. Front Nutr, 2022, 9, 849767.
doi: 10.3389/fnut.2022.849767 |
| 20 |
XU Y T , MA X K , WANG C L , et al. Effects of dietary valine: lysine ratio on the performance, amino acid composition of tissues and mRNA expression of genes involved in branched-chain amino acid metabolism of weaned piglets[J]. Asian Australas J Anim Sci, 2018, 31 (1): 106.
doi: 10.5713/ajas.17.0148 |
| 21 |
AMIRDAHRI S , JANMOHAMMADI H , TAGHIZADEH A , et al. Valine requirement of female Cobb broilers from 8 to 21 days of age[J]. J Appl Poult Res, 2020, 29 (4): 775- 785.
doi: 10.1016/j.japr.2020.04.005 |
| 22 | 王立. 外源缬氨酸影响小鼠脂肪沉积的机制研究[D]. 荆州: 长江大学, 2023. |
| WANG L. Study on the mechanism of exogenous valine affecting fat deposition in mice[D]. Jingzhou: Yangtze University, 2023. (in Chinese) | |
| 23 |
KITA K , MAKINO R . Influence of valine analogues on protein synthesis of chicken embryo myoblasts[J]. J Poult Sci, 2014, 51 (2): 191- 194.
doi: 10.2141/jpsa.0130162 |
| 24 |
DUAN Y , ZENG L , LI F , et al. Effect of branched-chain amino acid ratio on the proliferation, differentiation, and expression levels of key regulators involved in protein metabolism of myocytes[J]. J Nutr, 2017, 36, 8- 16.
doi: 10.1016/j.nut.2016.10.016 |
| 25 |
ZHANG J , HE W , YI D , et al. Regulation of protein synthesis in porcine mammary epithelial cells by L-valine[J]. Amino Acids, 2019, 51, 717- 726.
doi: 10.1007/s00726-019-02709-2 |
| 26 |
TANG S , XIE J , WU W , et al. High ammonia exposure regulates lipid metabolism in the pig skeletal muscle via mTOR pathway[J]. Sci Total Environ, 2020, 740, 139917.
doi: 10.1016/j.scitotenv.2020.139917 |
| 27 |
苗舒, 安济山, 王祚, 等. 亮氨酸通过PI3K-AKT信号通路促进牛成肌细胞的增殖[J]. 畜牧兽医学报, 2024, 55 (1): 142- 152.
doi: 10.11843/j.issn.0366-6964.2024.01.015 |
|
MIAO S , AN J S , WANG Z , et al. Leucine promotes the proliferation of bovine myoblasts through PI3K-AKT signaling pathway[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (1): 142- 152.
doi: 10.11843/j.issn.0366-6964.2024.01.015 |
|
| 28 |
冯铭, 伊旭东, 庞卫军. 肠道微生物通过骨骼肌纤维类型、肌内脂肪含量和骨骼肌代谢调控猪肉质研究进展[J]. 畜牧兽医学报, 2024, 55 (6): 2304- 2312.
doi: 10.11843/j.issn.0366-6964.2024.06.003 |
|
FENG M , YI X D , PANG W J . Research progress on intestinal microbes regulating pork quality through skeletal muscle fiber type, intramuscular fat content and skeletal muscle metabolism[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (6): 2304- 2312.
doi: 10.11843/j.issn.0366-6964.2024.06.003 |
|
| 29 |
ZHAO Z , GUO D , WEI Y , et al. Integrative ATAC-seq and RNA-seq analysis of the longissimus dorsi muscle of gannan yak and jeryak[J]. Int J Mol Sci, 2024, 25 (11): 6029.
doi: 10.3390/ijms25116029 |
| 30 |
CHEN B , WANG Y , HOU D , et al. Transcriptome-based identification of the muscle tissue-specific expression gene CKM and its regulation of proliferation, apoptosis and differentiation in chicken primary myoblasts[J]. Animals, 2023, 13 (14): 2316.
doi: 10.3390/ani13142316 |
| 31 |
ZHENG J , LOU J , LI Y , et al. Satellite cell-specific deletion of Cipc alleviates myopathy in mdx mice[J]. Cell Rep, 2022, 39 (11): 110939.
doi: 10.1016/j.celrep.2022.110939 |
| 32 |
CAO Y , HU G , LONG X , et al. Valine promotes milk synthesis by regulating PKM2 nuclear accumulation and histone H3 acetylation through the TAS1R1-mTOR-DDX39B signaling pathway[J]. Int J Biol Macromol, 2024, 254, 127786.
doi: 10.1016/j.ijbiomac.2023.127786 |
| 33 |
REZAEI R , WU G . Branched-chain amino acids regulate intracellular protein turnover in porcine mammary epithelial cells[J]. Amino Acids, 2022, 54 (11): 1491- 1504.
doi: 10.1007/s00726-022-03203-y |
| 34 |
KWON H C , JUNG H S , HAN J H , et al. Optimizing hormonal and amino acid combinations for enhanced cell proliferation and cell cycle progression in bovine mammary epithelial cells[J]. Anim Biosci, 2023, 36 (11): 1757.
doi: 10.5713/ab.23.0199 |
| 35 | 杜志强, 丁然, 赵素娟, 等. 缬氨酸影响小鼠C2C12细胞脂肪沉积的研究[J]. 东北农业大学学报, 2021, 52 (8): 39- 47. |
| DU Z Q , DING R , ZHAO S J , et al. Study on the effect of valine on fat deposition in mouse C2C12 cells[J]. Journal of Northeast Agricultural University, 2021, 52 (8): 39- 47. | |
| 36 | WANG XINLING , XU JIE , ZENG HANFANG . Enhancement of BCAT2-mediated valine catabolism stimulates β-casein synthesis via the AMPK-mTOR signaling axis in bovine mammary epithelial cells[J]. J Am Chem Soc, 2022, 70 (32): 9898- 9907. |
| 37 | KIM JUNGEUN , LEE JEONG-EUN , LEE JAE-SUNG . Phenylalanine and valine differentially stimulate milk protein synthetic and energy-mediated pathway in immortalized bovine mammary epithelial cells[J]. J Anim Technol or JAST, 2020, 6 (2): 263- 275. |
| 38 | 郝怡泓. 支链氨基酸对奶牛乳腺上皮细胞酪蛋白合成的影响[D]. 呼和浩特: 内蒙古农业大学, 2023. |
| HAO Y H. Effect of branched-chain amino acids on casein synthesis in dairy cow mammary epithelial cells[D]. Hohhot: Inner Mongolia Agricultural University, 2023. (in Chinese) | |
| 39 |
GUAN L , TANG Y , LI G , et al. Comprehensive analysis of role of cyclin-dependent kinases family members in colorectal cancer[J]. Front Oncol, 2022, 12, 921710.
doi: 10.3389/fonc.2022.921710 |
| 40 |
SERPICO A F , PISAURO C , GRIECO D . On the assembly of the mitotic spindle, bistability and hysteresis[J]. Cell Mol Life Sci, 2023, 80 (4): 83.
doi: 10.1007/s00018-023-04727-6 |
| 41 |
XU X , WANG C , YANG J , et al. EZH2 promotes DNA replication by stabilizing interaction of POLδ and PCNA via methylation-mediated PCNA trimerization[J]. Epigenet chromatin, 2018, 11, 1- 14.
doi: 10.1186/s13072-017-0171-z |
| 42 |
SONG J , HAO L , ZENG X , et al. A novel miRNA Y-56 targeting IGF-1R mediates the proliferation of porcine skeletal muscle satellite cells through AKT and ERK pathways[J]. Front Vet Sci, 2022, 9, 754435.
doi: 10.3389/fvets.2022.754435 |
| 43 | WU W , SUN J , JI H , et al. AMP-activated protein kinase in the grass carp ctenopharyngodon idellus: molecular characterization, tissue distribution and mRNA expression in response to overwinter starvation stress[J]. Comp Biochem Physiol A Mol Integr Physiol, 2020, 246, 110457. |
| 44 |
IHLAMUR M , AKGVL B , ZENGIN Y , et al. The mTOR signaling pathway and mTOR Inhibitors in cancer: next-generation inhibitors and approaches[J]. Curr Mol Med, 2024, 24 (4): 478- 494.
doi: 10.2174/1566524023666230509161645 |
| 45 |
XIE L , LI R , ZHANG J , et al. Methionine promotes milk synthesis through the BRCC36-BRG1-mTOR signaling axis in mammary epithelial cells[J]. J Agric Food Chem, 2024, 72 (4): 2135- 2144.
doi: 10.1021/acs.jafc.3c05370 |
| 46 |
TANG B , LUO Z , ZHANG R , et al. An update on the molecular mechanism and pharmacological interventions for ischemia-reperfusion injury by regulating AMPK/mTOR signaling pathway in autophagy[J]. Cell Signal, 2023, 107, 110665.
doi: 10.1016/j.cellsig.2023.110665 |
| 47 | 吴良邦, 葛云林. 薯蓣皂苷通过调控AMPK/mTOR自噬信号通路影响骨肉瘤细胞增殖及侵袭的机制研究[J]. 浙江中西医结合杂志, 2024, 34 (4): 304-309, 316. |
| WU L B , GE Y L . Mechanism of diosgenin affecting the proliferation and invasion of osteosarcoma cells by regulating AMPK/mTOR autophagy signaling pathway[J]. Zhejiang Journal of Integrated Traditional and Western Medicine, 2024, 34 (4): 304-309, 316. | |
| 48 |
LIANG Z , JIN C , BAI H , et al. Low rumen degradable starch promotes the growth performance of goats by increasing protein synthesis in skeletal muscle via the AMPK-mTOR pathway[J]. Anim Nutr, 2023, 13, 1- 8.
doi: 10.1016/j.aninu.2022.10.006 |
| 49 |
DU M , SHEN Q W , ZHU M J , et al. Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinase[J]. J Anim Sci, 2007, 85 (4): 919- 927.
doi: 10.2527/jas.2006-342 |
| 50 |
WANG X , XU J , ZENG H , et al. Enhancement of BCAT2-mediated valine catabolism stimulates β-casein synthesis via the AMPK-mTOR signaling axis in bovine mammary epithelial cells[J]. J Agric Food Chem, 2022, 70 (32): 9898- 9907.
doi: 10.1021/acs.jafc.2c03629 |
| 51 | 林峰, 付新梅, 王超, 等. 3C-like蛋白酶抑制剂的构效关系、分子对接和分子动力学[J]. 物理化学学报, 2016, 32 (11): 2693- 2708. |
| LIN F , FU X M , WANG C , et al. Structure-activity relationship, molecular docking and molecular dynamics of 3C-like protease inhibitors[J]. Acta Physico-Chimica Sinica, 2016, 32 (11): 2693- 2708. | |
| 52 |
ZINELDEEN D H , TAHOON N M , SARHAN N I . AICAR ameliorates non-alcoholic fatty liver disease via modulation of the HGF/NF-κB/SNARK signaling pathway and restores mitochondrial and endoplasmic reticular impairments in high-fat diet-fed rats[J]. Int J Mol Sci, 2023, 24 (4): 3367.
doi: 10.3390/ijms24043367 |
| 53 |
KHORRAMINEJAD-SHIRAZI M , SANI M , TALAEI-KHOZANI T , et al. AICAR and nicotinamide treatment synergistically augment the proliferation and attenuate senescence-associated changes in mesenchymal stromal cells[J]. Stem cell res ther, 2020, 11, 1- 17.
doi: 10.1186/s13287-019-1471-y |
| 54 |
GAN W , ZHANG N N , LI L . The regulation mechanism of AMPK/FOXO3 signal pathway in the apoptosis and differentiation of duck myoblasts[J]. Russ J Genet, 2021, 57, 97- 109.
doi: 10.1134/S1022795421010075 |
| 55 | 张娜, 符海鑫, 曹慧, 等. FLCN通过AMPK-mTOR信号轴调节奶牛乳腺上皮细胞能量代谢[J]. 东北农业大学学报, 2022, 53 (8): 71- 79. |
| ZHANG N , FU H X , CAO H , et al. FLCN regulates energy metabolism in dairy cow mammary epithelial cells through AMPK-mTOR signaling axis[J]. Journal of Northeast Agricultural University, 2022, 53 (8): 71- 79. | |
| 56 | 蓝日国. 牛磺酸通过AMPK-mTOR调节能量代谢缓解乳房链球菌感染诱导的炎症[D]. 南京: 南京农业大学, 2021. |
| LAN R G. Taurine regulates energy metabolism through AMPK-mTOR and alleviates inflammation induced by Streptococcus mammiae infection[D]. Nanjing: Nanjing Agricultural University, 2021. (in Chinese) |
| [1] | 张紫璇, 于雯靖, 王中华, 董旭晟, 侯秋玲. 奶牛乳腺发育评估技术及应用研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4176-4190. |
| [2] | 曹晓瑶, 汪聪勇, 王亭, 熊兰玲, 于河洋, 王泽昭, 高会江, 李俊雅, 朱波. 华西牛群体生长发育性状遗传参数估计及其遗传进展[J]. 畜牧兽医学报, 2025, 56(9): 4355-4368. |
| [3] | 郑云畅, 侯睿霖, 梁晓贺, 杨利丹, 张银蛟, 霍浩楠, 陈玮娜, 张萃, 李世杰. 牛FOXP2基因的单等位基因表达和DNA甲基化状态分析[J]. 畜牧兽医学报, 2025, 56(9): 4369-4378. |
| [4] | 王蕊, 衡诺, 胡樱凡, 王欢, 朱妮, 何维, 轩秀丽, 胡智辉, 熊铿, 巩建飞, 郝海生, 朱化彬, 赵善江. 不同等级牛卵丘-卵母细胞复合体体外成熟后卵母细胞发育能力差异的机制分析[J]. 畜牧兽医学报, 2025, 56(9): 4432-4451. |
| [5] | 马思琪, 吕雯雯, 陈俊贞, 李建林, 刘昱成, 关团, 丁剑, 刘浩然, 叶鸿艳, 杨莉, 付强, 史慧君. 牛肠病毒VP1基因重组腺病毒的构建及其对小鼠的免疫原性评价[J]. 畜牧兽医学报, 2025, 56(9): 4615-4625. |
| [6] | 杨书博, 苑庆欣, 陈麒百, 王培, 高东阳, 李鹤, 宋军. 金黄色葡萄球菌噬菌体脂质体的制备及胞内抗菌活性[J]. 畜牧兽医学报, 2025, 56(9): 4638-4645. |
| [7] | 刘佳金, 温小庆, 罗春海, 贾红豆, 王薇, 李丹阳, 付世新. FoxO1对高NEFA诱导的奶牛子宫内膜上皮细胞凋亡因子表达的影响[J]. 畜牧兽医学报, 2025, 56(9): 4708-4717. |
| [8] | 杨文哲, 王锦浩, 赵子琛, 赵彤, 潘飞龙, 陈芳芳, 邵雯琪, 刘克祥, 赵树臣, 赵立佳. 姜黄素影响铁死亡途径缓解LPS诱导牛乳腺上皮细胞炎性反应的分析[J]. 畜牧兽医学报, 2025, 56(9): 4730-4740. |
| [9] | 胡金玲, 钟奇祺, 黄程, 雷明刚. AKR1B1介导AMPK/mTOR/S6通路调控猪骨骼肌卫星细胞增殖和分化[J]. 畜牧兽医学报, 2025, 56(8): 3722-3733. |
| [10] | 万琼飞, 石闪闪, 郭若楠, 吕航, 胡德宝, 郭益文, 张林林, 丁向彬, 郭宏, 李新. 牛胚胎期肌肉发育关键lncRNA的筛选及功能分析[J]. 畜牧兽医学报, 2025, 56(8): 3802-3812. |
| [11] | 袁越, 周建旭, 罗晓林, 官久强, 安添午, 赵洪文, 柏琴, 任子利, 张翔飞, 赵彦玲. 过瘤胃脂肪对育肥牦牛生产性能、血清生化及屠宰性能的影响[J]. 畜牧兽医学报, 2025, 56(8): 3849-3860. |
| [12] | 包小平, 崔俊伟, 赵玉龙, 郭成, 陈明, 毕研亮. 产后不同挤奶时间对初乳品质及不同品质初乳对新生犊牛被动免疫转移的影响[J]. 畜牧兽医学报, 2025, 56(8): 3861-3871. |
| [13] | 王琳玮, 王靖, 韩赛波, 李涵川, 王盼盼, 郭刚, 蒋林树. 植物精油对哺乳期犊牛血清免疫及生化指标影响的Meta分析[J]. 畜牧兽医学报, 2025, 56(8): 3872-3892. |
| [14] | 时文健, 徐磊, 张泽, 杨蕊, 辛凌翔, 王楠, 陈祥, 鑫婷. 基于结核分枝杆菌牛变种C68001随机突变体库筛选和鉴定成膜相关基因[J]. 畜牧兽医学报, 2025, 56(8): 3992-4006. |
| [15] | 赵峂, 王亚慧, 吴天弋, 高晨, 高霄霄, 张路培, 高会江, 李俊雅. 过表达和干扰PRKD1基因对牛成骨细胞分化的影响[J]. 畜牧兽医学报, 2025, 56(7): 3188-3198. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||