1 |
王瑞环, 贾伟娜, 纪宽, 等. 可注射水凝胶在伤口敷料中的研究进展[J]. 化学通报, 2024, 87 (2): 157- 63.
|
|
WANG R H , JIA W N , JI K , et al. Research progress of injectable hydrogels in wound dressings[J]. Chemistry Bulletin, 2024, 87 (2): 157- 163.
|
2 |
包文慧, 赵佳敏, 巩志国, 等. MLKL在小鼠皮肤伤口愈合过程中的作用[J]. 中国农业大学学报, 2024, 29 (10): 230- 238.
|
|
BAO W H , ZHAO J M , GONG Z G , et al. Role of MLKL in the healing process of mouse skin wounds[J]. Journal of China Agricultural University, 2024, 29 (10): 230- 238.
|
3 |
陈凤, 杨敏, 李彦洁, 等. 人脐带间充质干细胞的分离培养及多向分化潜能研究[J]. 生物学杂志, 2021, 38 (5): 82-85, 90.
|
|
CHEN F , YANG M , LI Y J , et al. Isolation, culture, and multidirectional differentiation potential of human umbilical cord mesenchymal stem cells[J]. Journal of Biology, 2021, 38 (5): 82-85, 90.
|
4 |
MAXSON S , LOPEZ E A , YOO D , et al. Concise review: role of mesenchymal stem cells in wound repair[J]. Stem Cells Transl Med, 2012, 1 (2): 142- 149.
doi: 10.5966/sctm.2011-0018
|
5 |
ANDRZEJEWSKA A , LUKOMSKA B , JANOWSKI M . Concise review: Mesenchymal stem cells: From roots to boost[J]. Stem Cells, 2019, 37 (7): 855- 864.
doi: 10.1002/stem.3016
|
6 |
ROUSSELLE P , MONTMASSON M , GARNIER C . Extracellular matrix contribution to skin wound re-epithelialization[J]. Matrix Biol, 2019, 75-76, 12- 26.
doi: 10.1016/j.matbio.2018.01.002
|
7 |
PROCKOP D J . Repair of tissues by adult stem/progenitor cells (MSCs): Controversies, myths, and changing paradigms[J]. Mol Ther, 2009, 17 (6): 939- 946.
doi: 10.1038/mt.2009.62
|
8 |
ULLAH I , SUBBARAO RAGHAVENDRA B , RHO G J . Human mesenchymal stem cells: Current trends and future prospective[J]. Biosci Rep, 2015, 35 (2): e00191.
doi: 10.1042/BSR20150025
|
9 |
CASADO-DÍAZ A , QUESADA-GÓMEZ J M , DORADO G . Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: applications in skin wound healing[J]. Front Bioeng Biotechnol, 2020, 8, 146.
doi: 10.3389/fbioe.2020.00146
|
10 |
HA D H , KIM H K , LEE J , et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration[J]. Cells, 2020, 9 (5): 1157.
doi: 10.3390/cells9051157
|
11 |
VILLARROYA-BELTRI C , BAIXAULI F , GUTIÉRREZ-VÁZQUEZ C , et al. Sorting it out: regulation of exosome loading[J]. Semin Cancer Biol, 2014, 28, 3- 13.
doi: 10.1016/j.semcancer.2014.04.009
|
12 |
FEREYDOUNI N , DARROUDI M , MOVAFFAGH J , et al. Curcumin nanofibers for the purpose of wound healing[J]. J Cell Physiol, 2019, 234 (5): 5537- 5554.
doi: 10.1002/jcp.27362
|
13 |
AKBIK D , GHADIRI M , CHRZANOWSKI W , et al. Curcumin as a wound healing agent[J]. Life Sci, 2014, 116 (1): 1- 7.
doi: 10.1016/j.lfs.2014.08.016
|
14 |
ESMAEALZADEH N , MIRI M S , MAVADDAT H , et al. The regulating effect of curcumin on NF-κB pathway in neurodegenerative diseases: a review of the underlying mechanisms[J]. Inflammopharmacology, 2024, 32 (4): 2125- 2151.
doi: 10.1007/s10787-024-01492-1
|
15 |
MOMTAZI A A , SAHEBKAR A . Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile[J]. Curr Pharm Des, 2016, 22 (28): 4386- 4397.
doi: 10.2174/1381612822666160527113501
|
16 |
WEI Y , FANG J , CAI S , et al. Primordial germ cell-like cells derived from canine adipose mesenchymal stem cells[J]. Cell Prolif, 2016, 49 (4): 503- 511.
doi: 10.1111/cpr.12271
|
17 |
王浩. 负载姜黄素的巨噬细胞衍生外泌体的制备及其对阿尔茨海默病模型小鼠改善认知能力的机制研究[D]. 北京: 中国农业大学, 2020.
|
|
WANG H. Preparation of curcumin-loaded macrophage-derived exosomes and their mechanism in improving cognitive ability in Alzheimer's disease model mice[D]. Beijing: China Agricultural University, 2020. (in Chinese)
|
18 |
RODRIGUES M , KOSARIC N , BONHAM C A , et al. Wound healing: A cellular perspective[J]. Physiol Rev, 2019, 99 (1): 665- 706.
doi: 10.1152/physrev.00067.2017
|
19 |
ZYMEK P , BUJAK M , CHATILA K , et al. The role of platelet-derived growth factor signaling in healing myocardial infarcts[J]. J Am Coll Cardiol, 2006, 48 (11): 2315- 2323.
doi: 10.1016/j.jacc.2006.07.060
|
20 |
SIDGWICK G P , MCGEORGE D , BAYAT A . A comprehensive evidence-based review on the role of topicals and dressings in the management of skin scarring[J]. Arch Dermatol Res, 2015, 307 (6): 461- 477.
doi: 10.1007/s00403-015-1572-0
|
21 |
ZONG L , TENG R , ZHANG H , et al. Ultrasound-responsive HBD peptide hydrogel with antibiofilm capability for fast diabetic wound healing[J]. Adv Sci (Weinh), 2024, 11, e2406022.
doi: 10.1002/advs.202406022
|
22 |
XU R , GREENING D W , ZHU H J , et al. Extracellular vesicle isolation and characterization: toward clinical application[J]. J Clin Invest, 2016, 126 (4): 1152- 1162.
doi: 10.1172/JCI81129
|
23 |
LALU M M , MAZZARELLO S , ZLEPNIG J , et al. Safety and efficacy of adult stem cell therapy for acute myocardial infarction and ischemic heart failure (SafeCell Heart): A systematic review and meta-analysis[J]. Stem Cells Transl Med, 2018, 7 (12): 857- 866.
doi: 10.1002/sctm.18-0120
|
24 |
SOOD A , DEV A , DAS S S , et al. Curcumin-loaded alginate hydrogels for cancer therapy and wound healing applications: A review[J]. Int J Biol Macromol, 2023, 232, 123283.
doi: 10.1016/j.ijbiomac.2023.123283
|
25 |
ZHOU X , HONG Y , ZHANG H , et al. Mesenchymal stem cell senescence and rejuvenation: Current status and challenges[J]. Front Cell Dev Biol, 2020, 8, 364.
doi: 10.3389/fcell.2020.00364
|
26 |
HE X , DONG Z , CAO Y , et al. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing[J]. Stem Cells Int, 2019, 2019, 7132708.
|
27 |
JOE B , VIJAYKUMAR M , LOKESH B R . Biological properties of curcumin-cellular and molecular mechanisms of action[J]. Crit Rev Food Sci Nutr, 2004, 44 (2): 97- 111.
doi: 10.1080/10408690490424702
|
28 |
WANG H , CHEN Y , ZHAO S , et al. Effect of Sox9 on TGF-β1-mediated atrial fibrosis[J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53 (11): 1450- 1458.
doi: 10.1093/abbs/gmab132
|
29 |
YUAN J , BOTCHWAY B O A , ZHANG Y , et al. Curcumin can improve spinal cord injury by inhibiting TGF-β-SOX9 signaling pathway[J]. Cell Mol Neurobiol, 2019, 39 (5): 569- 575.
doi: 10.1007/s10571-019-00671-x
|
30 |
MIKHEEVA S A , MIKHEEV A M , PETIT A , et al. TWIST1 promotes invasion through mesenchymal change in human glioblastoma[J]. Mol Cancer, 2010, 9 (1): 194.
doi: 10.1186/1476-4598-9-194
|